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ABSTRACT 

 

 Specific aims of this study are to investigate the mechanism that governs the surface 

stress generation with hybridization of single stranded DNA (ssDNA) molecules 

immobilized on micro-cantilevers. The hybridization of DNA on cantilever surfaces leads to 

configurational change, charge redistribution, and steric hindrance between neighboring 

hybridized molecules, which result in surface stress change and measureable cantilever 

deformation. Differential interferometer with two adjacent micro-cantilevers (a 

sensing/reference pair) was investigated to measure the cantilever deformation. The sensing 

principle is that binding/reaction of specific chemical or biological species on the sensing 

cantilever transduces to mechanical deformation. The differential bending of the sensing 

cantilever respect to the reference cantilever ensures that measured response is insensitive to 

environmental disturbances. In order to improve the sensitivity for sensing system, new 

approach of immobilization was utilized to enhance the deformation of the cantilever surface. 

Immobilization of receptor molecules was modified to use ssDNA with thiol-groups on both 

3’ and 5’ ends; therefore both ends of the ssDNA molecules were immobilized to the gold 

surface and cause stronger surface interactions. To confirm the improvement of the 

sensitivity of the system, surface stress change associated with hybridization of ssDNA and 

malachite green-aptamer binding was measured. 

To explore the mechanism under the surface stress change associated with ssDNA 

hybridization. A general beam bending model was established based on the minimization of 

the total energy of the system. The energy consisted of the bending energy of the cantilever 

and the in-film energy due to the hybridization of ssDNA on the surface. Different stages of 
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immobilization were proposed according to the different immobilization densities and 

immobilization approaches, the in-film energy associated with each stage was investigated. 

Numerical predictions are carried out with different stages and compared to the experimental 

observations, and the findings confirmed the capability of the beam bending model to use in 

surface stress predictions. 
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CHAPTER 1. OVERVIEW 

 

A general simulation model is established to investigate the mechanism underlying the 

surface stress generation induced by the receptor-ligand binding. The model is based on the 

energy minimization of a beam bending model, and hybridization of ssDNA molecules are 

utilized as the verification of the model. The principle of the model is that the immobilized DNA 

molecules would lead to pairwise or pointwise molecular interactions after the hybridization, and 

the interactions will cause repulsions or surface reconstructions on the cantilever surface and 

bend the cantilever consequently. The interactions might include hydration forces, electrostatic 

repulsions, and interactions due to surface charge redistribution. The strength of the interactions 

is affected by the immobilization density, hybridization efficiency, molecular configuration, and 

ionic strength in the solution. 

Ultimate goal of this study is to achieve the mechanism based understanding of the 

surface stress generation due to the hybridization of the ssDNA molecules and the influence of 

parameters that controls the magnitude of the cantilever deformation. The knowledge of the 

mechanism of surface stress generation would lead to more accurate and reliable predictions of 

similar sensors with receptor-ligand binding, and help to investigate surface stress sensors with 

higher sensitivity and greater reliability. In order to achieve this goal, we established a general 

beam bending model to simulate the micro-cantilever behavior associated with the DNA 

hybridization, and verified the model with the comparison of experimental observations. These 

objectives were achieved through successful completion of tasks as follow: 

1) Establish the general energy model for simulation 

2) Investigate the different types of interactions due to the DNA hybridization on the 
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cantilever surface associated with different immobilization approaches and 

immobilization densities. 

3) Study the influence on the distribution of the ssDNA molecules on the cantilever surface 

and the hybridization efficiencies. 

4) Predict the surface stress change of the micro-cantilever with different immobilization 

methods, immobilization densities, distribution of the DNA molecules, and the 

hybridization efficiencies, and verify the model by comparing the predictions with the 

experimental reports. 

My contributions to the work and publications: 

1) Detection of cantilever deflection due to malachite green/aptamer binding: worked with 

Zhao. 

2) Mechanism study on cantilever deflection due to alkanethiol self-assembled monolayer 

immobilization on cantilever surface: worked with Kyungho. 

3) Cantilever deflection associated with hybridization of monomolecular DNA film. 

4) Cantilever deflection associated with hybridization of DNA hybridization with low 

densities and alternative immobilization approach. 

5) Influence of receptor immobilization on threshold sensitivity of micro-cantilever sensors: 

applications to DNA hybridization, worked with Kyungho Kang. 

6) An RNA aptamer-based microcantilever sensor to detect the inflammatory marker, mouse 

lipocalin-2, worked with Lijie Zhai, Tianjiao Wang, and Kyungho Kang. 
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CHAPTER 2. LITERATURE REVIEW 

 

Microcantilever Based Sensor 

In 1994, Thundat and his colleagues (Thundat, Warmack et al. 1994) made the seminal 

observation that Atomic Force Microscope (AFM) cantilevers deflect due to changes in relative 

humidity and thus opened a myriad of possibilities for the use of AFM cantilevers for chemical 

and biological sensing. They predicted possibilities of adsorbate detection of the order of 

picograms and immediately followed up with another study in which they detected mercury 

adsorption on cantilever from mercury vapor in air with picogram resolution (Thundat, Warmack 

et al. 1994, Thundat, Wachter et al. 1995). Also, Berger et al.(Berger, Delamarche et al. 1997) 

measured differential surface stress induced by formation of alkanethiol self-assembled 

monolayers (SAMs) on gold coated microcantilever. Godin et al.(Godin, Williams et al. 

2004)reported that surface stress development is dependent on the grain size of the gold film and 

elucidated the transition phases during SAM formation. The thickness of the SAM also affects 

the magnitude of the measurements as well as sensing performance (White, Phares et al. 2008). 

 Microcantilever based sensors have been successfully utilized for biomolecular 

recognitions. Fritz et al. (Fritz, Baller et al. 2000) monitored hybridization of single-stranded 

DNAs (ssDNAs). They measured surface stress of 5 mN/m and actuation force of 300 pN due to 

single base mismatch between 12-mer and 16-mer oligonucleotides. Moulin et al. (Moulin, 

O'Shea et al. 1999)conducted surface stress measurements of immunoglobulin G (IgG) and 

albumin (BSA) and found that the strength of surface stress change is time dependent.  

Majumdar and coworkers (Biswal, Raorane et al. 2006, Stachowiak, Yue et al. 2006) 

reported a series of works on label-free microcantilever sensor for biological detections. 
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Stachowiak et al. (Stachowiak, Yue et al. 2006) investigated the efficiency of DNA hybridization 

in various ionic strength and dependence on the grafting density as well as the length of the 

DNA. They found that surface grafting density of ssDNAs can be controlled by changing the 

DNA chain length and ionic strength. Inversely, Biswal et al.(Biswal, Raorane et al. 2006) 

measured surface stress changes associated with dehybridization of double-stranded DNA 

(dsDNA). They observed the response of melting and diffusing dsDNAs away from the 

cantilever as a function of salt concentration and length of oligonucleotides. They confirmed that 

increasing salt concentration and oligonucleotide length result in an increase in the melting 

temperature. They even extended their sensing platform to two-dimensional microcantilever 

sensor for high-throughput multiplexed chemical and biomolecular analysis. Several cantilevers 

are fabricated in parallel and each cantilever is functionalized for a specific target molecule. 

Through this process, they provided that the two-dimensional multiplexed microcantilever sensor 

can detect many target molecules. With the new sensor platform, they measured surface stress 

changes in the responses of DNA immobilization on gold surface(Yue, Lin et al. 2004), toluene 

and water vapor in vapor phase(Lim, Raorane et al. 2006), Prostate specific antigen (PSA)(Yue, 

Stachowiak et al. 2008) as low as 1 ng/mL which corresponds to 2 mN/m of surface stress 

change. 

Maraldo et al. (Maraldo, Garcia et al. 2007) performed the prostate cancer detection 

through prostate cancer biomarker (α-methylacyl-CoA racemase; AMACR) directly in patient 

urine. They demonstrated the function of microcantilever sensors as a feasible application of 

cancer detection. There have been many other applications to oligonucleotide hybridization 

(Hansen, Ji et al. 2001, McKendry, Zhang et al. 2002, Stachowiak, Yue et al. 2006, Zhang, Lang 

et al. 2006), receptor-ligand (Thaysen, Yalcinkaya et al. 2002, Marie, Thaysen et al. 2003, 
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Savran, Burg et al. 2003, Savran, Knudsen et al. 2004, Mukhopadhyay, Sumbayev et al. 2005), 

and antigen-antibody interaction (Raiteri, Nelles et al. 1999, Raiteri, Grattarola et al. 2001, 

Grogan, Raiteri et al. 2002, Dutta, Tipple et al. 2003). 

 

Differential Interferometer and Sensor Configurations 

In majority of the current state of art sensors, molecule absorption induced surface stress 

change is inferred from the deflection of a single or multiple laser beams reflected from the 

sensing surface. A large optical path is required between sensitized surface and position sensitive 

detectors to achieve high sensitivity in surface stress measurement. Deflection of two laser 

beams reflected each from sensing and reference cantilevers may also be used for differential 

surface stress measurement but that setup may suffer from the following drawbacks: measured 

sensitivity is again proportional to the distance between a cantilever and a photodetector; and 

measured response is determined by subtracting the two signals, which may lead to resolution 

losses. 

 The micro-cantilever based detection assay was performed with a differential 

interferometer. In the study, a pair of gold coated sample/reference micro-cantilevers was used. 

The sample cantilever was immobilized with thiolated aptamers, while the reference cantilever 

was immobilized with an irrelevant thiolated DNA oligo. In the sensing system, two laser beams 

were generated and hit on the sample and reference cantilevers respectively. The reflected 

signals were collected and interfered, and the intensity of the interfered fringe pattern was 

monitored.  

When the solution of the target molecules was introduced to the cantilever pair, a 

differential surface stress change was generated during the receptor-ligand binding, and a 
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differential cantilever deflection ∆l was induced. As a result, the path length difference travelled 

by the two reflected laser beam were shifted by a value of 2∆l, and a corresponding phase change 

of 2∆l/λ was observed. The intensity of the interfered fringe was monitored and recorded during 

the whole procedure of introduction of the target molecules till the signal got stable. By 

analyzing the interfered signal, the differential deflections and surface stress changes could be 

calculated. 

In details, the sensor system works with two mutually orthogonal polarization state: p 

state with polarization in-plane and the s state which is perpendicular to p. The laser beam starts 

with a linear polarizer at 45° relative to p and s states, and goes through Soleil Babinet 

compensator which shifts the phase between s and p states. After the beam splitter, the beam is 

divided into a reference (p state) and sensing (s state) parts, and hit on the cantilever pair after 

the focusing lenses. 

Both beams are back-reflected from the cantilevers and the sensing beam will travel path 

length 2∆l more than the reference beam. The two reflected beams will travel backwards, merge 

into one through the beam displacer, and the merged beam is reflected by the beam splitter.  

A Wollaston prism is placed at 45° relative to the merged reflective beam, and the intensity of 

the two beams coming out is detected and converted to electric signals I1 and I2 by two 

photodiodes. The photodiodes signals are 

 
 

 (1) 
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where Is (Ip) is the light intensity of the reflected beams, φ is the phase difference between the 

reflected beams. As a result, we can monitor the change of the phase difference between 

reference and sensing beams by 

 
 

 (2) 

During the process of receptor-ligand binding, the signals were monitored recorded, and 

change of the phase difference ∆φ was calculated from equation (2), and the differential 

deflection was  accordingly, and differential surface stress (Δσ) between the two 

cantilevers is determined using Stoney’s formula (Stoney 1909). 

 
 

 (3) 

where E is the Young’s modulus and ν is the Poisson’s ratio; L and t are the effective length and 

thickness of the cantilever; l is the static deflection of the cantilever beam. 

 Micro-cantilevers are the heart of nanomechanical sensors to transducer molecular 

adsorption and reactions into mechanical response. Microcantilevers are made of silicon or 

silicon nitride where a thin gold film (10 - 200 nm) is deposited on one side by evaporating or 

sputtering in an ultrahigh vacuum (UHV). A thin layer of Cr or Ti (> 10nm) improves the 

adhesion between a gold layer and a solid silicon substrate. In the sensor system, two adjacent 

rectangular tipless silicon cantilevers (480 µm long, 80 µm wide, and 1 µm thick) with a top side 

coating of 5nm titanium and 30nm gold film. (Nanoworld, Switzerland) were used as 

sensing/reference pair. AFM cantilevers are batch produced with large variation of dimensions 

and mechanical properties from the manufacture’s quote.  
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DNA Hybridization Induced Cantilever Deflection 

Microcantilever based sensors are an intriguing new alternative for conventional 

chemical and biological sensors because of their extremely high sensitivity and miniature sensing 

elements. The sensing strategy involves coating one surface of a micromachined cantilever with 

a receptor species that has high affinity for the analyte molecule. Binding of the ligand on the 

sensitized surface induces a mechanical deformation of the microcantilevers thus transducing the 

surface chemical reaction into a measurable quantitative signal. Thundat and his colleagues 

(Thundat, Warmack et al. 1994) made the seminal observation that Atomic Force Microscope 

(AFM) cantilevers deflect due to changes in relative humidity and thus opened a myriad of 

possibilities for the use of AFM cantilevers for chemical and biological sensing. They predicted 

possibilities of adsorbate detection of the order of picograms and immediately followed up with 

another study in which they detected mercury adsorption on cantilever from mercury vapor in air 

with picogram resolution (Chen, Warmack et al. 1994, Allison, Thundat et al. 1995). Since these 

initial reports, microcantilever-based sensors have been investigated for sensing of 

chemicals(Tamayo, Humphris et al. 2001, Lavrik, Sepaniak et al. 2004), DNA hybridization 

(Fritz, Baller et al. 2000, Hansen, Ji et al. 2001, Wu, Ji et al. 2001, Alvarez, Carrascosa et al. 

2004, Stachowiak, Yue et al. 2006, Kang, Nilsen-Hamilton et al. 2008, Jin, Shin et al. 2009, 

Kang, Nilsen-Hamilton et al. 2009), explosives (Thundat, Pinnaduwage et al. 2004, Zuo, Li et al. 

2007, Seena, Rajoriya et al. 2010), biomolecules (Ilic, Czaplewski et al. 2001, Raiteri, Grattarola 

et al. 2001, Wu, Datar et al. 2001, Arntz, Seelig et al. 2003), and markers for cancer (Hood, 

Heath et al. 2004, Ferrari 2005, Sengupta and Sasisekharan 2007). 

DNA hybridization is a simple and prominent example of biomolecular recognition and 

detection, since it is fundamental to most biological process. Fritz et al. (Fritz, Baller et al. 2000) 
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monitored hybridization of surface immobilized single stranded DNA (ssDNA) with 

oligonucleotide length of 12 nt, and with 3 different concentration values of the target ssDNA 

molecules (80nM, 400nM, and 2000nM). Cantilever deflections of about 3 nm, 15 nm, and 21 

nm were reported respectively. Cantilever deflection was also found to be different for 

hybridization of ssDNA with strands that had single base-pair mismatch, indicating that 

microcantilever based sensors have intrinsic sensitivity to detect single nucleotide 

polymorphisms. Since this work, cantilever deflection due to ssDNA hybridization has been 

utilized as an validation experiments for new techniques, and cantilever deflection signal up to 

~100 nm have been reported for those experiments (Wu, Ji et al. 2001, McKendry, Zhang et al. 

2002, Stachowiak, Yue et al. 2006, Kang, Nilsen-Hamilton et al. 2008, Kang, Nilsen-Hamilton et 

al. 2009). 

Hansen et al. (Hansen, Ji et al. 2001) also demonstrated that hybridization induced 

cantilever deflection can be used to discriminate base-pair mismatches with 20- and 25-mer 

probe DNA molecules. They used 10-mer DNA oligonucleotides as complementary target 

molecules which contain one or two internal mismatches. The results showed that the number 

and position of mismatch pairs will affect the deflection of the cantilever. 

Stachowiak and co-workers (Wu, Ji et al. 2001, Stachowiak, Yue et al. 2006) conducted 

experiments to investigate the influence of ssDNA strand length, immobilization density and 

hybridization efficiency on the hybridization induced microcantilever deformation. The salt 

concentrations in immobilization and hybridization buffer were varied to achieve different 

immobilization density and coverage of hybridized molecules, respectively. Changing the salt 

concentrations from 0 to 1000 mM resulted in an increase in immobilization density from 0.06 to 

0.12 nm-2 and similar change of salt concentration in hybridization buffer resulted in an increase 
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of hybridization efficiency from 30% to 80%. Three different molecular lengths of 10 nt, 20 nt, 

and 30nt were used and both immobilization density and coverage of hybridized molecules 

decreased as the chain length increased. Hybridization induced cantilever deflections 

corresponding to different chain lengths, immobilization densities and hybridization efficiencies 

collapsed on to a single curve when expressed as a function of the coverage of hybridized chains. 

These results indicated that the effects of the immobilization density, hybridization efficiencies 

and chain length are coupled and the cantilever deflection primarily depends on the surface 

coverage of hybridized chains. 

Kang (Kang 2011) reported the influence of receptor molecule immobilization on the 

surface stress changes associated with DNA hybridization. In order to investigate the influence 

of ssDNA immobilization on hybridization induced mechanical deformation, surface stress 

changes were measured for two different immobilization schemes of receptor DNA strands: one 

end tethered and both end tethered. The immobilization density of receptor molecules and were 

also measured and confirmed that in both immobilization schemes they had the same 

immobilization density of 1.9×1016 molecules/m2. They confirmed the double thiolation method 

could improve the threshold sensitivity by orders of magnitude and measure target concentration 

as low as 2 nM, and had a surface stress change of 30 mM/m, while single thiolation cases can 

achieve the same surface stress at a target concentration of 100 nM. 

 

Mechanism Exploration and Simulation Approaches 

Although there have been extensive efforts to elucidate the origin of the biomolecular 

binding induced surface stress changes, consensus on the underlying mechanisms is still elusive 

due to complex molecular interactions. Compressive surface stresses are attributed due to an 
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expansion of a cantilever surface influenced by electrostatic repulsion of surface groups and 

increasing the number of negative charges on the surface. Alternatively, conformational changes 

of receptor molecules caused by hybridization or binding that result in formation of ordered 

structures may relax the repulsive steric interactions between disordered unbound molecules 

bending the cantilever upward to tensile direction. Therefore, when a surface bound with single-

stranded oligonucleotides undergoes hybridization, conformational changes from a single strand 

to a rod-like double helix may result in initial tensile surface stress changes but as the 

hybridization proceeds the surface stress development changes sign to compressive stresses due 

to buildup of charge interactions among neighboring molecules. Conformational changes and 

electrostatic and hydrophobic forces are dependent on individual ligand/receptor pair, so the 

transition point and dominant phenomena is difficult to identify (Fritz 2008). 

Wu et al.(Wu, Ji et al. 2001) introduced thermodynamic principles to explain the 

nanomechanical motion of the cantilever during DNA immobilization and hybridization. In 

addition to the electrostatic repulsive force between neighboring DNA chains, they argued that 

the origin of cantilever bending is due to a change in configurational entropy and intermolecular 

energetics induced by specific biomolecular interactions. When immobilized single-stranded 

DNAs interplay between neighboring chains, the configurational entropy decreases which lead to 

increase entropic driving force. The configurational entropy of single-stranded DNA is highest in 

a free solution, but forming double stranded DNAs during DNA hybridization reduces this 

entropic driving force balanced by the strain energy of bending the cantilever. Therefore, this 

curvature produces the cantilever bending up to tensile direction. 

In order to explain the underlying mechanism for hybridization induced deflection, Fritz 

(Fritz 2008) hypothesized that the cantilever deflection is result of two competing mechanism: 
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electrostatic repulsion between negative charges on the DNA strands and relaxation of steric 

hindrance as disordered ssDNA transition to ordered DNA strands. The increase in negative 

charges during hybridization results in an expansion of the cantilever surface due to the 

electrostatic repulsion and consequently, bending of the cantilever. Alternatively, when surface 

bound single stranded oligonucleotide undergo hybridization, conformational changes from a 

disordered strand to rod-like double helix result in relaxation of the steric hindrance and 

contraction of the surface. The competing mechanisms were proposed to explain cantilever 

bending observed during hybridization experiments. During the initial phase of DNA 

hybridization the relaxation of steric hindrance leads to relaxation of cantilever bending but as 

the hybridization proceeds, the surface starts expanding due to buildup of charge interactions 

among neighboring molecules. However, it is important to note that the DNA hybridization 

experiments are performed in buffers with high salt concentrations. The positive ions in the 

solutions may shield the electrostatic repulsion between the strands and the magnitude of inter-

chain repulsion may depend on the ionic composition of the hybridization buffer. 

Besides the electrostatic effects, hydration forces between the chains may also lead to 

hybridization induced cantilever deflection (Strey, Parsegian et al. 1997, Strey, Parsegian et al. 

1999, Hagan, Majumdar et al. 2002). To study the effect of the hydration forces, Mertens et 

al.(Mertens, Rogero et al. 2008) conducted experiments to investigate the influence of relative 

humidity on deflection of micro-cantilevers immobilized with ssDNA and double stranded DNA 

(dsDNA). Deflection of cantilevers with ssDNA and dsDNA strands increased to about 500 nm 

and 600 nm, respectively as the relative humidity was changed from 0 to 100%.These results 

indicate that hydration forces play an important part in determining cantilever deflection. 
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Hagan et al.(Hagan, Majumdar et al. 2002) modeled the hybridization induced cantilever 

deflections based on both electrostatic repulsions and hydration forces between DNA strands. 

The microcantilever was modeled as a membrane and the DNA strands were modeled as straight 

rods immobilized on the membrane surface. Repulsive interactions between the DNA strands 

lead to increase in their spacing and rotation of rods, resulting in cantilever bending. Cantilever 

deflections due to a high immobilization density of 0.17 chains/nm2 and hybridization efficiency 

of 100% were investigated. Based on the numerical results it was concluded that the cantilever 

deflection induced by uniformly distributed DNA strands is much smaller in magnitude 

compared to experimental observations. However, numerical prediction based on disordered 

arrangement of DNA strands and 100% hybridization efficiency was found to match the 

experimental observations. 

Zhang et al. (Zhang and Shan 2008, Zhang and Chen 2009, Zhang, Chen et al. 2010, 

Zhang, Meng et al. 2013) have performed theoretical analysis on the DNA hybridization induced 

cantilever deflections. They established multi-scale analytical model to consider the influence of 

the inhomogeneous distribution of net charge and flexibility of elastic properties of DNA biofilm. 

They concluded that with high immobilization density, hydration forces are the dominate 

interactions, while with low immobilization density, the conformational entropy dominates. 

Moreover, they developed an energy model for deflection predictions to determine the influence 

of the distribution of the DNA molecules on the cantilever surface, and concluded that the 

stochastic effect on the chain separations is greater than that of the elastic modulus.  

Strey et al. (Strey, Parsegian et al. 1997, Strey, Parsegian et al. 1999) proposed a liquid 

crystal model to represent the hybridized dsDNA molecules immobilized on the surface of 

microcantilevers, and established pairwise potential models for dsDNA molecular interactions 



www.manaraa.com

14 

 

 

for both electrostatic interactions and hydration forces. While Zhang et al. (Zhang, Tan et al. 

2011) investigated the theories related to interactions of ssDNA immobilized on 

microcantilevers. In their report, they conclude that when the immobilization density of ssDNA 

is low, the interaction energy between neighboring molecules will be too weak to be dominant. 
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CHAPTER 3. DETECTION OF CANTILEVER DEFLECTION DUE TO 

MALACHITE GREEN/APTAMER BINDING 

 

Modified from a paper to be submitted 

 

Yue Zhao, Tianjiao Wang, Marit Nilsen-Hamilton, Pranav Shrotriya 

 

Abstract 

Microcantilever based sensors can be used for quantitative analysis of the 

nanomechanical response associated with conformational change and the corresponding charge 

transduction during molecular interaction. A specific aptamer is used for Malachite Green (MG) 

recognition, and two different immobilization methods are investigated, single thiolation and 

double thiolation. The surface stress changes due to the aptamer-ligand binding are measured 

with differential interferometry techniques and the sensitivity of the two different methods are 

compared. The findings show that the double thiolation method has a significant improvement on 

the threshold sensitivity of the sensing system. 

 

Introduction 

Microcantilever based sensors are widely studied for their capability for transducing 

chemical reactions on the sensor to mechanical signals and therefore can act as sensors in 

chemical and biological sensing. The surfaces of the microcantilevers are coated with a film of 

receptor molecules which can react with target analyte molecules with certain sensitivity and 
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specificity. The analyte molecules can be detected by observation of the cantilever deformation 

due to the binding of target molecules on the functionalized surfaces of the sensors.  

Thundat and his colleagues (Thundat, Warmack et al. 1994, Thundat, Wachter et al. 

1995) first reported their finding on the Atomic Force Microscope (AFM) cantilever deflection 

due to changes of relative humidity, which revealed the potential of the AFM cantilevers to work 

as chemical and biological sensors. Unlike chemical reactions (Su and Dravid 2005, Kadam, 

Nordin et al. 2006), the sensors with receptor/analyte binding suffer from low sensitivity and 

detection thresholds (Ji and Armon 2010), because the deflection magnitudes and surface stress 

changes are low during the binding. For example, surface stress changes of approximately 2 to 

40 mN/m have been reported for hybridization of 9-mer to 30-mer ssDNA oligonucleotides 

(Fritz, Baller et al. 2000, Wu, Ji et al. 2001, Alvarez, Carrascosa et al. 2004, Biswal, Raorane et 

al. 2006, Stachowiak, Yue et al. 2006, Zhang, Lang et al. 2006). 

The weak nature of these intermolecular interactions results in low magnitude of 

mechanical deformation and consequently, limits the sensitivity and detection limit associated 

with target analyte. This low sensitivity becomes an obstacle for microcantilever sensors to be 

the use of biomolecular recognition (Ji and Armon 2010). Consequently, many attempts have 

been made to improve the threshold sensitivity and selectivity of the sensing platform by 

controlling sensing environments (Mertens, Rogero et al. 2008), adding new materials 

(Weizmann, Patolsky et al. 2004), or inventing new structures (Pei, Lu et al. 2010). 

In this chapter, we report the investigation on the difference of surface stress changes due 

to different immobilization methods for malachite green (MG) and malachite green aptamers 

(MGA). The different immobilization schemes are schematically illustrated in Figure 1, and 

surface stress changes are captured by a differential sensor based on laser interfere technology. 
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The immobilization density of different immobilization methods are also measure based on the 

fluorescent behavior of MG. 

 

Figure 1. Schematic illustration of different immobilization methods. (A) Single thiolated MGA 

immobilization; (B) Double thiolated immobilization. 

 

Materials and Methods 

MGA/MG binding pairs 

The malachite green aptamers (MGA) are short single-stranded RNA molecules which 

bind specifically to malachite green (MG) molecules. Structural analyses of the MGA/MG 

binding pairs (Wang, Hoy et al. 2009) show that the aptamers have a tertiary structure and form a 

binding pocket for the MG molecules to sit in. The MGA and MG molecules both change their 
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structures during binding. To be specific, the MG molecule becomes flatter and the MGA twists 

in structure. 

The thiolated MGA oligonucleotides were synthesized by Integrated DNA Technologies, 

Inc. (Coralville, IA) with the reported sequences as listed: thiol – 5’ – GGAUCCCGA CUG 

GCG AGA GCC AGG UAA CGA AUG GAU CC – 3’ (– thiol) (The second thiol group is 

optional for different sensor preparation). MG molecules were purchased from Sigma (St. Louis, 

MO) 

 

Micro-cantilever specification and sensor preparation 

High aspect ratio tipless AFM cantilevers used in the sensor system were purchased from 

Nanoworld, Switzerland. The cantilevers used were 500 µm long, 20 µm wide and 1 µm thick, 

and coated with 5 nm of titanium and 30nm of gold film. 

In the sensor system, a sensing/reference pair of micro-cantilever were used. The sensing 

cantilever was immobilized with the thiolated MGA molecules and the reference cantilever was 

immobilized with scrambled DNA molecules that do not bind with the target MG molecules. 

Two different types of sensing cantilevers were prepared, one immobilized with MGA with one 

thiolgoup at 5’ end, and the other immobilized with MGA with thiol groups at both 3’ and 5’ 

ends. 

 

Differential interferometer 

The micro-cantilever based detection assay (Figure 2) was performed with a differential 

interferometer. In the sensing system, two laser beams were generated and hit on the sample and 
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reference cantilevers respectively. The reflected signals were collected and interfered, and the 

intensity of the interfered fringe pattern was monitored.  

 

Figure 2. Schematic presentation of cantilever based surface stress sensor 

 

A Wollaston prism is placed at 45° relative to the merged reflective beam, and the 

intensity of the two beams coming out is detected and converted to electric signals I1 and I2 by 

two photodiodes. The photodiodes signals are 

 
 (4) 

where Is (Ir) is the light intensity of the reflected beams from sensing and reference cantilever 

respectively, φ is the phase difference between the reflected beams. As a result, we can monitor 

the change of the phase difference between reference and sensing beams by 

 
 (5) 

When the MG solution was introduced to the cantilever pair, a differential surface stress 

change were generated during binding, and a differential cantilever deflection ∆l was induced. 
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As a result, the path length difference travelled by the two reflected laser beam were shifted by a 

value of 2∆l, and a corresponding phase change of 2∆l/λ was observed. The intensity of the 

interfered fringe was monitored and recorded during the whole procedure of protein introduction 

till the signal got stable. By analyzing the interfered signal, the differential deflections could be 

calculated as . 

 

Experimental Procedures 

In preparation of the experiments, all the micro-cantilever were cleaned with piranha 

solution (70% H2SO4 and 30% H2O2) for 1 minute, and rinsed in deionized water. The thiolated 

MGA were diluted to 0.5 uM concentration with the immobilization buffer (50mM Tris-HCl, 

150mM NaCl, 5mM MgCl2, pH 7.4), and heated up to 60°C to break any disulfide bonds. The 

sensing cantilevers were immersed in the MGA solution for 3 hours for functionalization, and 

then treated with 3 mM 6-mercapto-1-hexanol solution to wash away all non-immobilized MGA 

molecules that stayed on the cantilever surface. The reference cantilever is prepared in the same 

procedure except with the scrambled DNA solution. 

 

Surface coverage density tests 

Before the surface stress experiments were taken with the sensor, the coverage densities 

of the sensing cantilever with both single and double thiolated MGA were determined with 

fluorescence tests (Demers, Mirkin et al. 2000). After the immobilization of the sensing 

cantilever, it was merged in the etching buffer (12mM β-mercapthoethanol) for 48 hours. The 

immobilized MGA molecules were etched into the buffer during the procedure and the etched 

buffer were used to complete the fluorescence tests based on the fluorescent behavior of MG. 
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Surface stress experiments 

The binding experiments were carried out for both single- and double thiolated sensors 

with different concentrations of MG in the binding buffer (10 mM HEPES, 100 mM KCl, 5 mM 

MgCl2, pH 6.0). The sensing and reference cantilever were mounted in the interferometer 

system, and submerged in the binding buffer. The MG solution was introduced to the system and 

the reflected interfered signals were monitored during the differential deflection development.  

Three different sets of experiments were carried out with three different types of sensing 

cantilevers. (1) The sensing cantilevers were immobilized with single thiolated MGA; (2) the 

cantilevers were immobilized with double thiolated MGA; and (3) the cantilevers were first 

immobilized with the binding complex of double thiolated MGA and MG, and then the MG 

molecules are washed away by DI water of 80˚C. 

 

Results 

Surface coverage density 

Three measurements were taken for both single- and double thiolated immobilization. 

Fluorescence signal was observed to be 7.114 – 8.653 for single thiolated MGA immobilization, 

while it was 6.135 – 7.532 for double thiolated case. The surface coverage densities were then 

found to be 0.06 – 0.15 nm-2 and 0.04 – 0.12 nm-2 for single and double thiolated immobilization 

respectively, with a 90% confidence interval. 

 

Surface stress change 

The surface stress tests were conducted with injections of MG solutions with different 

concentrations. Figure 3 shows a typical profile of the surface stress development during the 
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binding of MGA and MG molecules. Surface stress changes developed after the injection of the 

MG solution into the system, and reached the saturation state within 15 to 20 minutes in average. 

A surface stress change of 14.5 mN/m was observed with single thiolated MGA and MG at final 

concentration of 100 nM. 

 

Figure 3. Typical profile of surface stress development during MGA/MG binding with a final 

concentration of 100nM. 

 

Changes in surface stress during the binding of MG and MGA were captured with 

different concentrations. The results for experiments set 1 with single thiolated MGA turned to 

be 10 to 53 mN/m (Figure 4), and the concentration range MG solution is from 50 to 5000 nM. 

For experiments set 2 with double thiolated MGA, the surface stress change was 9 to 70 mN/m 

with MG concentration of 5 to 5000 nM; and experiments set 3 showed the surface stress of 14 

to 85 mN/m also with 5 to 5000 nM MG solutions. 



www.manaraa.com

23 

 

 

 

Figure 4. Surface stress change vs. MG concentration for 3 different immobilization methods. 

  

Discussions 

Surface coverage tests showed that the coverage densities for both single- and double 

thiolated MGA immobilization turned to be of the same magnitude, in average 0.09 and 0.08 

molecules/nm2 respectively, which measured in the salt concentration of 150 mM. The results of 

surface coverage agreed with others’ report with similar salt concentration, and therefore 

obtained high degree of reliability in the tests. In addition, the average separations between 

immobilized molecules were calculated to be 3.4 and 3.9 nm respectively based on the hexagonal 

closed pack assumption.  
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Figure 5. Comparison between 3 different sets on the threshold sensitivity, with 90% confidence 

interval. 

 

The surface stress measurements associated with binding of the three different 

immobilization methods of MGA were plotted and compared in Figures 4 and 5. The 

measurements results showed that, with the same MG concentration injected, the double 

thiolated cases resulted in higher surface stress changes than those of single thiolated cases, and 

experiments set 3 provided the highest surface stress change when saturated among the three 

different types of immobilization. At low concentrations, the double thiolated cases (sets 2 and 3) 

induced much greater surface stress changes, and the threshold sensitivity was increased by 

about 10 times (from ~50 mM to ~5 mM). However, the surface stress changes will saturate at 

lower MG concentration with double thiolated sets (500 nM for set 2, 1000 nm for set 3) 

compared to single thiolated set (~2000 nM for set 1). 
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The equilibrium reaction of the binding and the corresponding disassociation constant 

(kd) are studied. According to early study, single thiolated DNAs have pairwise interactions 

which lead to a second order relationship between surface stress changes and binding 

efficiencies. And with the definition of disassociation constant, we could get 

 
 (6) 

where c is the concentration of the MG molecules, K is the strength constant. The disassociation 

constant turns out to be 73 nM. The surface binding efficiencies corresponding to each 

concentration can be determined with the determined binding affinity, and the surface stress 

changes were plotted with the binding efficiency for all three sets of measurements in Figure 6. 

 

Figure 6. Interaction strength for all 3 sets of measurements. 

The results showed that the sensitivity to binding efficiency for single thiolated case (set 

1) was increasing as more aptamers bind with MG molecules. While for double thiolated cases 
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(sets 2 and 3), the surface stress changes are linear with the binding efficiency, and sensitivities 

are constant (74 and 88 mN/m respectively), which are 7 to 8 times of the sensitivity of set 1 at 

low binding efficiencies (less than 10%). 

It is generally assumed that the surface stress change is induced by the pairwise potential 

due to the conformational change of the molecules after binding with the targets. The possible 

potentials include electrostatic repulsions due to deprotonation, conformational entropy along 

with repulsive steric interactions, and counterion osmotic pressure. Earlier studies showed that 

among all these potentials, the hydration forces due to disturbance on the hydration bonding 

network are the dominant factor for the surface stress generation (Strey, Parsegian et al. 1999, 

Hagan, Majumdar et al. 2002, Mertens, Rogero et al. 2008), and simulations based on that can 

reasonably predict the surface stress change for single thiolated case, and the magnitude depends 

on the surface coverage density or the inter-molecular separations.  

The surface coverage tests showed that the immobilization densities are similar for all 

three different immobilization types, which confirms that the differences in surface stress 

changes for different measurement set are irrelevant to the surface coverage or the molecular 

separations. As a result, the surface stress changes with double thiolated sets (sets 2 and 3)were 

assumed to be due to some alternative origins. Since the double thiolated immobilization will 

bond both ends of MGA onto the surface of the cantilever, the immobilized molecules are pulled 

closer to the surface, the electrostatic effects resulted from the molecular conformational change 

will have greater influence on the gold sensing surface. The conformational changes of the MGA 

before and after binding with the MG have been studied and observed that the MGA molecules 

will have a significant twisting on the molecular structure. The twisting force couple will 
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transmit to the sensing surface, and the surface will suffer reconstructions, which will possibly 

lead to cantilever deflections, and result in a greater surface stress signal and higher sensitivity. 

Though the threshold sensitivity was improved by one order of the magnitude, the 

effective range of sensing was also reduced to 500 nM (set 2) from 2000 nM (set 1). This was 

possibly due to that when immobilizing both ends of MGA, some of the molecules would be 

restricted in some structures which were difficult to bind with MG. Set 3 was designed to 

improve this by immobilizing the surface with MGA molecules which were already bound with 

MG and washing the MG away afterwards. In this manner, most MGA molecules immobilized 

onto the surface were in the structure readily to bind with MG. The measurements showed that 

the effective range was improved to 1000 nM with set 3. 

 

Conclusion 

Efforts were made to improve the sensitivity of the micro-cantilever based sensors. A 

new immobilization method was designed to achieve this goal. Instead of having thiol groups on 

one end of the MGA molecules which were immobilized on the sensor surface, they were 

attached with thiol groups on both ends before immobilization. Results showed that this 

immobilization method can greatly increase the sensitivity for lower concentrations and improve 

the threshold by one order of magnitude. 

One side effect of the double thiolated treatment is that the sensitive range is greatly 

reduced due to the fixed molecular structure. Simple adjustment is conducted to reduce the side 

effect by immobilizing with double thiolated MGA which are bound with MG. With this 

modification, most MGA immobilized on the surface would be ready to adsorb MG. And the 

sensing limit is increased and the threshold sensitivity is still low. 
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The new immobilization method is capable to improve the sensitivity and the sensing threshold 

for the micro-cantilever based sensor, but the surface coverage density measurements showed 

similar immobilization densities. Therefore, the stronger response of the sensor should due to 

some stronger interactions induced by the MG/MGA binding, which is still not clearly 

understood. Reports on MGA structure study showed that MGA molecules were twist when 

bound with MG, which would possibly induce centers of rotation on the sensor surface. In 

addition, when both ends were bonded on the surface, the receptor molecules would be closer to 

the surface and have stronger influence to the surface. Therefore, the new immobilization 

method tends to induce stronger surface reconstructions on the sensor and lead to greater surface 

stress changes. 
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CHAPTER 4. MECHANISM STUDY ON CANTILEVER DEFLECTION DUE TO 

ALKANETHIOL SELF-ASSEMBLED MONOLAYER IMMOBILIZATION ON 

CANTILEVER SURFACE 

 

Modified from a paper to be submitted 

 

Yue Zhao, Kyungho Kang, Pranav Shrotriya 

 

Abstract 

Experimental results show that the adsorption of the self-assembled monolayers (SAMs) 

on a gold surface induces surface stress change that cause a deformation of underlying substrate. 

Multiscale computational models based on Molecular dynamic (MD) simulations are applied to 

study the mechanism governing surface stress change. Alkanethiols chains are chemisorbed on 

the gold surfaces due to bond formation between gold and sulfur atoms. Two different 

mechanisms for adsorption induced surface deformation are investigated. In the first mechanism, 

inter-chain repulsion between the alkanethiol molecules is assumed to drive the surface 

deformation; however the simulation results show that this mechanism has little contribution to 

the surface stress change. In the second mechanism, surface reconstruction caused by the gold-

sulfur interaction during alkanethiol chemisorption is assumed to induce the surface stress 

change. Two different inter-atomic potential, embedded atom method (EAM)(Daw and Baskes 

1983, Daw and Baskes 1984, Foiles, Baskes et al. 1986) and surface embedded atom method 

(SEAM)(Haftel and Rosen 1995), are used in the MD simulations to study the reconstruction 

induced surface stresses. According to first principle calculation by Andreoni et al. (Gronbeck 
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and Andreoni 2000), the gold-sulfur interaction will cause an expansion in the nearest gold 

atoms with inter-atom separation changing from 2.88 to 3.45 Å. This reconstruction is modeled 

through a modified potential for gold atoms by changing the electron density function of the gold 

atoms nearest to sulfur in EAM and SEAM potentials. Simulations based on modified EAM 

potentials show that, each gold atom will lose nearly 0.8 electrons to sulfur atom in order to 

match the surface reconstruction. While simulations based on modified SEAM potential give a 

more reasonable value that each gold atom loses 0.2 electrons to the sulfur for the required 

reconstruction, which is also in good agreement with results from first principle calculations by 

Beardmore et al. (Beardmore, Kress et al. 1997). Results of the simulations based on modified 

potentials are used in a multi-scale continuum framework (Kukta, Kouris et al. 2003) to predict 

the associated surface stress. A surface stress range of 0.12 – 4.38 N/m with respect to the 

surface coverage change from 0.006 to 0.139 Å-2 is obtained. Comparison of the predicted 

surface stress changes with observed experimental response indicate that the modified SEAM 

based multiscale models can capture the surface stress changes observed during alkanethiol self-

assembled layer formation.  

Introduction 

Microcantilever based sensors have shown great potential to detect the presence of 

chemical and biological species by transduction of the molecular interaction to a measurable 

mechanical deformation. Thundat et.al (Thundat, Warmack et al. 1994) reported the deflection of 

atomic force microscope (AFM) cantilevers due to changes in relative humidity and thermal 

heating and thus opened a myriad of possibilities for the use of AFM cantilever deflection 

technique for chemical and biological sensing. Berger et al. (Berger, Delamarche et al. 1997) 

reported microcantilever bending associated with formation of alkanethiols self-assembled 
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monolayers. Their results showed that the immobilization of the SAMs will cause a downward 

bending of the micro-cantilever. Surface stress range of 0.05 to 0.25 N/m were observed for 

alkanethiols with chain lengths of 4 to 14 methyl groups. Measured surface stress change was 

found to increase linearly with chain length of the alkanethiol molecules. 

 Since the first report of SAM formation induced surface stress change (Berger, 

Delamarche et al. 1997), SAMs have been used as test system to validate most of cantilever 

based sensing techniques. Experiments have been conducted to study response of the cantilever 

based sensor to different materials and end groups (Lang, Berger et al. 1998, Fritz, Baller et al. 

2000, Cyganik, Buck et al. 2005, Zhai, Wang et al. 2012), measurement theory (Godin, Tabard-

Cossa et al. 2001, Dareing and Thundat 2005, Zhao, Ganapathysubramanian et al. 2012), and 

cantilever properties(Dannenberger, Buck et al. 1999, Lachut and Sader 2007). Alkanethiol 

SAMs (HS-(CH2)n-1-CH3) are one of the commonly studied SAMs, because they are relatively 

easy to prepare, form well-ordered close packed films and offers possibilities of variations in 

chain lengths, end groups and ligand attachments.  

 Godin et.al (Godin, Williams et al. 2004) hypothesized that the SAM formation 

progresses through three different phases as the surface coverage density of the alkanethiol 

molecule increases. These phases are the unstacked lying-down phase, stacked lying-down phase 

and standing-up phase. Their experimental results showed that kinetics of absorption and final 

surface coverage density of the SAM on gold-coated cantilevers depended on the grain size of 

the gold films. For larger grain size and lower surface roughness, the SAM formation progressed 

through all three phases and finally formed a close packed standing-up pattern that corresponded 

to surface stress change of 15.9± 0.6 N/m. While, for smaller grain size and greater surface 
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roughness, SAM formation stopped in the stacked lying down phase leading to a smaller surface 

stress change of 0.51±0.02 N/m. 

 Desikan and coworkers (Desikan, Lee et al. 2006, Desikan, Armel et al. 2007) measured 

surface stress changes associated with SAM formation for a range of alkanethiol chain lengths on 

cantilevers with different surface roughness. They observed surface stress change of 

approximately 0.09 - 0.15 N/m when the RMS roughness of cantilevers changed through three 

orders of magnitude from 1.32 to 12.8 nm for alkanethiol SAM. In addition, the measured 

surface stress changed from 0.7 to 1.2 N/m with alkanethiol chain length of n = 8, 12, and 18 for 

a cantilever with surface roughness RMS of about 10nm.Based on the experimental observation, 

they concluded that the alkanethiol SAM induced surface stress change is not sensitive to the 

surface roughness and the chain length. 

Surface stress generation during SAMs formation has been attributed to number of 

different mechanisms such as intermolecular repulsion between the alkanethiol chains, 

electrostatic repulsion between adsorbates and surface stresses due to surface reconstructions. 

Godin et.al(Godin, Tabard-Cossa et al. 2010) performed experiments which showed barely any 

difference of surface stress induced by SAMs of different length. They also conducted molecular 

simulations that showed that intermolecular Lennard-Jones and electrostatic forces can only 

generate relatively small surface stresses (0.001-0.05 N/m), and argued that the dominant affect 

may be the surface charge redistribution. 

 Andreoni et al. (Gronbeck and Andreoni 2000) used first principle calculations based on 

density functional theory to show that absorption of thiolated molecules on gold surface leads to 

redistribution of the charge density and the gold atoms closest to the sulfur atom undergo a 

surface expansion with interatom separation changing from 2.88 to 3.45 Å. Beardmore et al. 
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(Beardmore, Kress et al. 1997) also conducted first principle quantum calculation for thiol-gold 

bond and showed that the gold atoms participating in the gold-thiol bond become more positive 

while the sulfur atoms become more electronegative. Some recent groups have utilized first 

principle based approaches to determine  

In this paper, the surface stress generated during the formation of self-assembled 

monolayers is investigated using a combined experimental and computational approach. A 

differential surface stress sensor is utilized to measure the surface stress generated due to 

alkanethiol SAM formation of gold coated micro-cantilevers. All-atom molecular dynamics 

(MD) simulations of alkanethiol chains on gold surface were performed to study the surface 

stress induced by interchain interactions and electrostatic interactions. Modified embedded atom 

potentials are derived to model the gold surface reconstruction due to gold-sulfur bond 

formation. The modified embedded potentials are utilized in multiscale framework to predict the 

alkanethiol SAM induced surface stress changes. The results of simulations are compared with 

experimental reports to test the validity of the modeling assumptions. 

 

Surface Stress Measurements 

A differential surface stress sensor consisting of two adjacent cantilevers, a 

sensing/reference pair, where only the sensing surface is activated for adsorption of chemical or 

biological molecules was utilized for measuring the surface stress generated due to Alkanethiol 

SAM formation on gold surfaces. Optical circuit for the surface stress sensor is shown in Figure 

7. Kang et al. (Kang, Nilsen-Hamilton et al. 2008, Kang and Shrotriya 2008) have reported the 

principle and details of differential surface stress measurement. Measurement of differential 

surface stress ensures that detected signal is proportional to specific absorption of analyte species 
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on the sensing cantilever and eliminates the influence of environmental disturbances such as 

nonspecific adsorption, changes in pH, ionic strength, and especially the temperature.  

 

Figure 7. Optical circuit of the surface stress sensor. 

 

Cantilever 

In the sensor system, two adjacent rectangular tipless silicon cantilevers (480 µm long, 80 

µm wide, and 1 µm thick) with a top side coating of 5nm titanium and 30nm gold film. 

(Nanoworld, Switzerland) were used as sensing/reference pair. AFM cantilevers are batch 

produced with large variation of dimensions and mechanical properties from the manufacture’s 

quote (Sader and White 1993, Sader, Chon et al. 1999). In order to accurately measure surface 

stress development, the thickness of each cantilever is calculated based on the experimentally 

measured spring constant with the material constants (Sader, Chon et al. 1999). Microstructure 
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and surface roughness of the gold film on the cantilever were determined using contact mode 

atomic force microscope imaging. 

 

Experimental procedure 

 Liquid octanethiol [CH3(CH2)7SH] was selected as alkanethiol solution and purchased 

from Sigma-Aldrich. All the AFM cantilevers were cleaned by immersing for 3 minutes in 

piranha solution (70% H2SO4, and 30% H2O2 by volume) and were then rinsed in deionized 

water and dried in the gentle N2 flow. Only the reference cantilevers were incubated in pure 

octanethiol solution for 12 hours to ensure the formation of a self-assembled monolayer (SAM) 

on the gold film. Formation of a stable SAM on the reference cantilever ensures that alkanethiol 

molecules are only absorbed on the sensing cantilever during subsequent experiments. 

Surface stress development associated with alkanethiol SAM formation was measured in 

three steps. In the first step, reference and sensing cantilever were mounted in the sensor and 

stability of the interferometer was first checked to ensure that measured signal is not affected by 

drift and ambient noise. In the second step, 20mL of pure liquid octanethiol was injected into a 

beaker placed near the two cantilevers. The vapors of alkanethiol solutions were confined near 

the cantilevers and interferometer was utilized to measure the deflection of sensing cantilever 

associated with deposition and formation of alkanethiol SAMs. Differential surface stress which 

is proportional to the cantilever deflection is then calculated by using Stoney’s Formula(Stoney 

1909) with obtained spring constant and geometry of the cantilever. 

After the exposure to alkanethiol, both the sensing and reference cantilevers are expected 

to be covered with alkanethiol SAM; therefore, reintroduction of alkanethiol vapors should not 

cause further differential bending of the cantilevers. In the last step, sensing and reference 
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cantilevers were again exposed to alkanethiol vapors to ensure that measured surface stress 

change is associated with only alkanethiol formation.  

 

Experimental Results 

Gold film on the cantilever was imaged using contact mode and grain size was 

determined to be 40 ± 10 nm (Figure 8). The mean square roughness of the gold surface was 

2.07±0.23 nm for the 750 nm scan size. The stiffness of the cantilever was found to be in the 

range of 0.16-0.18 N/m resulting in a calculated thickness of approximately 1.7- 1.8 m. 

 

Figure 8. AFM image (750nm×750nm) of gold film microstructure on AFM cantilevers 

 

Experimental measurements of surface stress induced due to vapor phase deposition of 

alkanethiol during a typical run are plotted in Figure 9. As soon as alkanethiol solution is 

injected, the microcantilever undergoes an initial tensile surface stress change before the 

compressive surface stress development. Initial tensile surface stress development has been 

previously reported by other researchers as well and is thought to be associated with knocking 

off of surface adsorbed species by individual alkanethiol molecules(Berger, Delamarche et al. 
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1997). After the initial knock-off phase, the alkanethiol molecules get adsorbed on the surface 

and arrange into self-assembled monolayers. According to Figure 9, alkanethiol SAMs rapidly 

form in the early stages, 10 minutes after injection, but it took about 50 minutes to complete 

SAM formation (final saturation). In the initial phase, plot of surface stress change closely 

resembles a Langmuir adsorption isotherm. The second development of surface stress change in 

Figure 9 is due to slow saturation of closely packed SAM on sensing cantilever. In addition, the 

distance of cantilever to the location where alkanethiol droplets are introduced was 10 cm away. 

As a result, final surface stress change was 0.28 ± 0.02N/m and the corresponding differential 

bending was 180 ± 10 nm at grain size of gold surface was 40 ± 10 nm.  

 

Figure 9. A typical result on cantilever deflection and surface stress change during the adsorption 

of alkanethiol SAM.  

 

After the SAM formation on the sensing cantilever, sensor was again exposed to 

alkanethiol vapors. A minimal surface stress change during re-introduction of the alkanethiol 

vapors indicates that both sensing and reference cantilever are covered with alkanethiol SAM. 
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Furthermore, it indicates surface stress change observed during the first introduction is 

unambiguously associated with SAM formation on sensing cantilever. Previous reports(Godin, 

Williams et al. 2004) have indicated that distance of cantilever to the location where alkanethiol 

droplets are introduced, condition of gold surface like cleanliness and roughness, and grain 

structure of the gold on the cantilever’s surface affects the kinetics and magnitude of surface 

stress development. Among those conditions, the microstructure of gold film significantly 

influences the development of the surface stress during the formation of Alkanethiol 

SAMs(Godin, Williams et al. 2004). 

Measured surface stress changes for alkanethiol SAM formation in the current 

experiments is compared to other reports in Table 1 as a function of grain size, surface roughness 

and alkanethiol chain length. 

Table 1. Surface stress change reports with different parameters 

specimen 

type 

Alkanethiol 

Chain length 

Roughness on 

750nm scan size 
Grain Size 

Surface 

stress (N/m) 
Source 

cantilever 

4 C - 12 C - 
not 

reported 
0.1-0.25 

(Berger, Delamarche 

et al. 1997) 

12 C 0.3 nm large 15.9 
(Godin, Williams et al. 

2004) 

12 C 0.9 nm small 0.51 
(Godin, Williams et al. 

2004) 

6 C - 10 C Not reported large 6.3 
(Godin, Tabard-Cossa 

et al. 2010) 

12 C 1.32-12.8 nm 
not 

reported 
0.09-0.15 

(Desikan, Lee et al. 

2006) 

8, 12, 18 C 10 nm 
not 

reported 
1.2-0.7 

(Desikan, Armel et al. 

2007) 

8 C 2.07 nm small 0.28 This work 

plate 18 C 1.92 nm small 0.12-0.15 
(Shrotriya, Karuppiah 

et al. 2008) 
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Overall Energy of the System due to SAM Adsorption 

The mechanism of the cantilever bending due to SAM formation is still not well 

understood, however it is generally agreed that the adsorbed molecules are responsible for the 

compressive stress that develops during the adsorption procedure on the surface. The relationship 

between the cantilever deflection and surface stress is given by Stoney’s formula(Stoney 1909),  

 
 (7) 

where  is surface stress, h is the cantilever thickness, R is the radius of curvature due to 

bending, and E and  are Young’s modulus and Poisson ratio of the cantilever. 

 The SAM-cantilever system consists of three parts: the SiNx base layer, the gold layer for 

SAM adsorption, and the thin layer of SAM chains (Figure 10). According to the reported results 

from earlier experiments and simulations(Poirier and Pylant 1996, Andreoni, Curioni et al. 2000, 

Gronbeck and Andreoni 2000), the gold layer is with Au(111) orientation and the sulfur atoms 

preferentially bind to gold surface on the fcc sites(Gronbeck and Andreoni 2000). In this study, 

we assume that the SiNx base is not affected by the SAM absorption since it is far enough from 

the absorption part and the interactions will be minimum. Therefore the surface stress changes 

associated with SAM formation are only due to two dominant origins, the adsorbed alkanethiol 

layer and the gold substrate. 
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Figure 10. Structure of the microcantilever with alkanetiol adsorption.  

 

The surface stress is defined as the first derivative of the total surface energy change of 

the system ( ) with respect to the surface strain ( ). The total surface energy change during the 

alkanethiol SAM formation process is considered to be due to two dominant parts: the energy 

change within the alkanethiol SAM ( ), and the energy change of the gold substrate 

associated with the SAM formation ( ). Accordingly, the surface stress induced by 

SAM formation also consists of two components (SAM layer and gold substrate): 

 

 

 

(8) 

The effects of  and  are investigated respectively, and the results are 

compared to determine which component is more dominant in surface stress generation due to 

alkanethiol SAM formation. 

 

Energy models Associated with Alkanethiol SAM Layer 

During the SAM formation, the energy change associated with SAM layer ( ) may 

come from various origins, including the bonding energy of the covalent chemical bonds within 

molecules ( ), the Lenard-Jones potential associated with the van-der-Waal forces between 

unbonded atoms ( ), the interaction energy of gold-sulfur interactions ( ), and the 

Coulomb energy associated with electrostatic forces between charged molecules ( ). 

  (9) 
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All these different types of energies are investigated and considered in the energy model. 

The bonding energy (Xia, Jian et al. 1992, Bosio and Hase 1997) includes the harmonic 

potentials for bond stretching (stretch), bond bending (bend), and the bond twisting (dihedral) 

(equation 10(a)). The Lenard-Jones potentials (Jiang 2002) were used to model the interactions 

between atoms that were not bonded to each other (equation 10(b)). For gold-sulfur interaction, 

based on a united atom model, Zhang et al. (Zhang, Goddard et al. 2002) employed the Morse 

potential to depict the interaction, since it can mimic the bonding from a partially covalent bond 

(equation 10(c)). Partial charges for C, H atoms were obtained from previously reported charge 

analysis(Franzen 2003), and the Coulomb potentials for the interactions between charged 

molecules are utilized. These intramolecular and intermolecular potential function parameters 

have been previously reported to accurately capture the equilibrium conformations, vibrational 

frequencies, and excess enthalpies of the simulated molecules (Rappe, Casewit et al. 1992, 

Vemparala, Karki et al. 2004). 

 

 
(10(a)) 

 

 

(10(b)) 

 

 

(10(c)) 

where all the parameters ( ) are previously reported. 

 

Energy models Associated with Gold Substrate 

Besides the interchain and intrachain effects within the molecular layer of alkanethiol 

SAM, the surface stress changes may also be due to the gold substrates. The alkanethiol 
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molecules are chemisorbed on the surface with the sulfur atom forming a strong bond with gold 

atoms and induce remarkable surface reconstructions. The gold-sulfur bond may result in 

changes in the electron clouds and the separations of Au atoms. Andreoni et al. (Gronbeck and 

Andreoni 2000) used first principle calculations based on density functional theory to show that 

absorption of thiolated molecules on gold surface leads to redistribution of the charge density, 

and the gold atoms closest to the sulfur atom undergo a surface expansion with interatom 

separation changing from 2.88 to 3.45 Å. Beardmore et al. (Beardmore, Kress et al. 1997) also 

conducted first principle quantum calculation for gold-sulfur bond and showed that the gold 

atoms participating in the bonding become more positive charged while the sulfur atoms become 

more electro-negative. 

Two empirical potentials were modified and utilized to model the energy of the gold 

substrate associated with surface reconstructions due to gold-sulfur bonds during the SAM 

formation, the embedded atom method (EAM) (Daw and Baskes 1983, Daw and Baskes 1984, 

Foiles, Baskes et al. 1986) and surface embedded atom method(Haftel and Rosen 1995) 

(SEAM). Both two empirical potentials have been widely applied to model gold bulk and surface 

properties, and have the following form: 

 

 
(11) 

 

where F is the embedding function that depends only on the local electron density from the 

surrounding atoms, ρ is the electron density function from a single atom at a distance r, and  is 

the pair potentials between atoms as a function only of the separation between two atoms.  
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 In these potentials, the embedding function provides the cohesive interaction or attractive 

force between the atoms while the shielded electrostatic interactions results in a repulsive force 

between the atoms. Interatomic spacing and the lattice arrangement of the atoms is determined 

by the balance of cohesive and repulsive forces. The first principle calculations(Andreoni, 

Curioni et al. 2000) suggest that during alkanethiol SAM formation, sulfur atoms occupy fcc 

sites on Au (111) surface and the three nearest gold atoms become more positive as they bind to 

the sulfur atoms. In order to model the surface reconstruction, we assumed that the electron 

density  of the gold atoms triplet nearest to sulfur atoms is reduced, leading to reduction in 

cohesive forces and consequently increase in the interatomic spacing between them. 

EAM/SEAM can solve problems for metals or alloys with different component, but not for 

metals with surface attachment with adatoms such as sulfur. To solve this problem, we took a 

modification to the potential models to represent the electron loss of atoms, by changing the 

electron density function. The electron density of gold triplet binding to sulfur atoms is described 

as: 

  (12) 

where the k is reduction factor.  

 

Simulation Models and Surface Stress Predictions 

 The influences of the energy changes associated with SAM layer and gold substrate are 

investigated separately with the energy models described above. Molecular dynamics (MD) 

simulations were conducted with an open source shared parallel code – LAMMPS 

(http://lammps.sandia.gov/). 

http://lammps.sandia.gov/
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 For energy investigation with SAM layer, simulation box containing 24×24alkanethiol 

molecules are utilized (Figure 11). The close packed alkanethiol (S-(CH
2
)
15

-CH3) chains are 

hexagonally arranged at full coverage density on fcc sites on Au (111) plane with an 

approximate 30° initial tilt angle with respect to the normal vector of the surface. Two layers of 

gold atoms are utilized to present the gold substrate, and in order to simulate the energies coming 

from the SAM molecules alone, the gold atoms are kept fixed and the interactions associated 

with gold atoms are neglected.. The simulation box is periodic along the in-plane directions (x 

and y) and with fixed boundary conditions in z direction. 

 

Figure 11. Schematic illustration of the simulation box, periodic boundaries along in-plane 

directions.  

 

 For energy investigation with the gold substrate, simulation box containing 36×60×60 

gold atoms are utilized with Au (111) lattice, and lines of gold triplet atoms on the top surface 

are selected to have the reduction of the electron density to present the gold atoms that interact 

with the sulfur atoms of the adsorbed SAM molecules (Figure 12). Bottom layer of the gold 
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atoms was held fixed and the z dimension was chosen to be larger than extent of gold lattice in 

order to simulate the free surface. The simulation box is with periodic y and fixed z boundary 

conditions, and two different boundary conditions are applied to x direction, periodic (direct 

computation) and fixed (continuum elasticity based computation), for different analysis 

approaches. 

 

Figure 12. Top view showing the gold triplet atoms on the surface of gold substrate.  

 

 Surface stress changes associated with SAM layer and gold substrate during the SAM 

formation are analyzed based on the energy observations from the simulations. The energy 

components are evaluated with respect to different strain values applied to the simulation box. 

Strains are applied by stretching or compressing the simulation box by certain ratio, and the 

energies associated with SAM layer and gold substrate are calculated accordingly. With all the 

simulation results, the energies can be plotted as a function of the applied strain, and the surface 

stress changes are analyzed with the relationship between the energies and the strain. 

 Two different approaches, direct computation and continuum elasticity based 

computation, were applied for surface stress analysis associated with SAM formation. The 
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surface energy changes were calculated as the difference between energy computation with and 

without the SAM immobilization (equation (13)). 

  (13) 

 With the direct computation approach, the surface stress are simply predicted with the 

definition (equation (8)) based on the energy/strain relationship. The first derivative of the 

energy with respect to strain is taken for surface stress prediction. 

 The continuum elasticity computation approach was also utilized to investigate the 

surface stress based on the Elastic interaction between the strain fields imposed due to adsorption 

of alkanethiol chains on the surface. Following Kukta et al.(Kukta, Kouris et al. 2003), the elastic 

field induced by an adsorbed alkanethiol molecule is approximated by a force dipole acting on 

the surface. Absorption induced energy change associated with gold substrate is modeled as a 

quadratic function of surface strain as:  

 
 

(14) 

where  is the strength of the force dipole induced due to atom adsorption and  determines 

dependence of induced force dipole on the surface strain to first order. For a two dimensional 

geometry, the surface stress change due to molecule adsorption is expressed as(Kukta, Kouris et 

al. 2003): 

 
 (15) 

where  is a positive constant related to substrate Poisson’s ratio (ν) and the shear 

modulus (μ); η is the density of molecules on the surface. 
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Modeling results and Discussions 

 In order to determine the energy associated with SAM layer at the equilibrium state in the 

room temperature, three steps were taken with 1fs time step in MD simulations with LAMMPS 

code. The system was first set to a very low temperature (0.45 K) with NVT ensembles (fixed 

number of atoms, volume, and temperature. After the energy was relaxed and stabilized, the 

temperature of the system was raised and kept fixed at room temperature (300 K) with NVT 

ensembles until equilibrium state was achieved. Extra charges of the CH3end groups were 

applied to all SAM molecules, and the temperature was also kept at 300 K until the equilibrium. 

In all three steps, the simulation continued with NVE ensembles (fixed number of atoms, volume, 

and energy) for a period of time (100 ps) to exact statistical information. 

 Strains (-0.2% to 0.3%) were applied by stretching or compressing the simulation box, 

and corresponding energies were collected. The energy changes (differences between 

configurations with and without applied strain) associated with SAM layer in the three steps 

were plotted with respect to the strain (Figure 13). Surface stress is investigated through direct 

computation with the relationship of the strain as the definition (equation (8)). However, the 

simulation results showed that in all three steps, the energies have no obvious trend with respect 

to strain, which would lead to an insignificant surface stress observation. In details, compared to 

the short-term and thermal energies, the long term energies which contributed to inter-chain 

interactions such as the Lenard-Jones potentials, and Coulomb energy between molecules were 

too small to affect the energy trend line. Thus the surface energy change associated with SAM 

layer was negligible, and was not the dominant origin of the surface stress generation due to 

SAM formation. 
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Figure 13. Normalized energy changes with respect to strain  

 

 Investigations on modified EAM and SEAM empirical potentials were conducted with 

increasing electron loss in order to match the surface expansion results with reported first 

principle calculation observations(Andreoni, Curioni et al. 2000). The surface expansion results 

are shown in Table 2 with corresponding electron density reduction factor for EAM and SEAM 

potentials. k = 0.8 and 0.2 were found to achiever the reported expansion of 3.45 Å for EAM and 

SEAM models respectively, that is, each gold atom need to lose 0.8 electrons for EAM potential, 

while 0.2 electrons for SEAM potential. Therefore, in EAM model observation, a total amount of 

2.4 electrons were lost to a sulfur atom, while in SEAM model, only 0.6 were lost. Beardmore et 

al.(Beardmore, Kress et al. 1997) reported residual atomic charges of (3×0.17) obtained by fits to 

the electrostatic potential and dipole moments for SAM formation. As a result, the SEAM gave a 

better performance in surface stress problem to simulate the electron loss, and we chose to use 

modified SEAM empirical potential in the simulations of surface stress generation associated 

with the surface reconstructions in this study. 
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Table 2. Surface expansion results with EAM and SEAM potentials 

reduction factor (k) EAM expansion ( Å) reduction factor (k) SEAM expansion ( Å) 

0 2.88 0 2.88 

0.5 3.19 0.05 2.92 

0.7 3.38 0.1 3.21 

0.8 3.46 0.2 3.47 

1 5.87 0.3 5.14 

 

 With the modified SEAM potential, direct computation and continuum elasticity based 

computation, were both applied for energy calculation and surface stress calculation associated 

with gold substrate. In the direct computation approach, different number of lines of gold triplet 

atoms ((1, 2, 3, 4, 6, 12 lines) were utilized to present different coverage densities of SAM, and 

the energy change (per area) was found to be proportional to the number of lines of gold triplet 

atoms. Energy changes per line of gold triplet atoms associated with different densities are 

plotted in Figure 14 as a function of applied strain (-0.5% to 0.5%). The relationship between the 

surface energy and strain was analyzed and the surface stress was calculated as the first 

derivative of the energy with respect to the strain (equation (8)). Secord order relationship was 

obtained between the surface energy and surface strain, thus the surface stress change was linear 

dependent of strain in this calculation. Surface stress was plotted as a function of the coverage 

density of SAM with the applied strain of 0, and was found to be proportional to the coverage 

density (Figure 15), the negative values suggested compressive surface stress on the cantilever. 
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Figure 14. Direct computation approach: surface energy change per line of gold triplet vs. strain 

 

 

Figure 15. Surface stress change prediction vs. coverage density and comparison with 

experimental reports  
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 In the continuum elasticity based computation, surface energy change was computed with 

1 line of gold triplet atoms and was plotted in Figure 16 as a function of strain (-0.5% to 0.5%). 

Second order relationship was applied to fit the curve, and the fitted parameters were used for 

surface stress predictions (equation (16)). The surface stress predictions were plotted in Figure 

16 with respect to the surface coverage density. Non-linear influences of the coverage density 

were observed due to the consideration of the second order term in the energy/strain relationship.  
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Figure 16. Continuum elasticity based computation: energy change vs. strain  

 

Comparison of Numerical Predictions with Experimental Reports 

 Since the surface stress change due to the SAM layer is negligible, the dominant origin of 

the surface stress change during the SAM formation is from the surface reconstruction of the 
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gold substrate. Two models, direct simulation computation and continuum elasticity based 

computation, are established to study and confirm the surface stress change with respect to the 

immobilization density of the SAMs. The direct computation predicted a stress range of 0.12 to 

3.06 N/m which was proportional to the immobilization density, and the continuum elasticity 

based computation provided a stress range of 0.16 to 4.38 N/m. These two models generally 

predicted the surface stress change of similar magnitude, while continuum elasticity based 

computation provided a little higher stress changes due to the nonlinear effects. 

 Both direct computation and continuum elasticity based computation provided surface 

stress predictions that cover the range of the reported experimental results. As in Godin’s report 

(Godin, Williams et al. 2004), grain size and roughness condition of the gold coating has 

significant effects on the surface stress changes. The SAMs adsorption on to surfaces with large 

and flat grains would have high quality monolayers, and vice visa SAMs on small-grained 

surface would have incomplete adsorption and thus have lower immobilization density and less 

dense packing. As a result, larger gain and smaller roughness will provide higher immobilization 

density. The comparison between simulation and experimental results are plotted in Figure 15 

that most experiments were performed with small grained surface which lead to low 

immobilization densities, and according to Godin’s work (Godin, Williams et al. 2004), they all 

form SAMs with lying-down phases. 

 

Conclusions 

 Separate simulations were performed to study the influences of the energy changes 

associated with SAM layer on the surface and gold substrate on the surface stress change due to 

the immobilization of the alkanethiol SAMs. The simulations with SAM layer showed the 



www.manaraa.com

53 

 

 

surface stress change due to interchain and intra chain interactions of SAM molecules was 

negligible, and the surface stress associated with the surface reconstruction of the gold substrate 

was strong dependent of the surface coverage density. The results suggested that the surface 

reconstructions of the gold substrate were the dominant origin of the surface stress generation. 

As a result the chain length takes very little influences on the surface stress change during the 

SAM formation.  

The modified SEAM and EAM potentials were first introduced to the SAM study with 

electron loss considerations, and the results showed that to achieve the same surface expansion, 

EAM had to suffer more electron loss than it was required for SEAM. In this work, SEAM 

provided more reasonable electron loss per gold atom (0.2) compared to that of EAM 

(0.8).According to the results, we suggested that SEAM would be more suitable when analyzing 

the surface problems with SAM studies.  

 Both direct computation and continuum elasticity based computation approaches 

provided similar ranges of surface stress predictions with modified SEAM potential. The 

predictions increased with the surface coverage density, and the total range of the predictions 

covered the reported experimental results. According to Godin’s work, the surface stress 

observations were greatly affected by the grain size of the gold substrate. Larger grains may lead 

to better immobilization and higher immobilization density which will induce higher surface 

stress, while smaller grains may on contrast lead to lower surface stress change.  
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CHAPTER 5. CANTILEVER DEFLECTION ASSOCIATED WITH HYBRIDIZATION 

OF MONOMOLECULAR DNA FILM 

 

Modified from a paper submitted to Journal of Applied Physics 

 

Yue Zhao, Baskar Ganapathysubramanian, Pranav Shrotriya 

 

Abstract 

Recent experiments show that specific binding between a ligand and surface immobilized 

receptor such as hybridization of single stranded DNA (ssDNA) immobilized on a 

microcantilever surface leads to cantilever deflection. The binding induced deflection may be 

used as a method for detection of biomolecules such as pathogens and biohazards. Mechanical 

deformation induced due to hybridization of surface immobilized DNA strands is a commonly 

used system to demonstrate the efficacy of microcantilever sensors. To understand the 

mechanism underlying the cantilever deflections, a theoretical model that incorporates the 

influence of ligand/receptor complex surface distribution and empirical interchain potential is 

developed to predict the binding induced deflections.  The cantilever bending induced due to 

hybridization of DNA strands is predicted for different receptor immobilization densities, 

hybridization efficiencies and spatial arrangements. Predicted deflections are compared with 

experimental reports to validate the modeling assumptions and identify the influence of various 

components on mechanical deformation.  Comparison of numerical predictions and experimental 

results suggest that at high immobilization densities, hybridization induced mechanical 

deformation is determined primarily by immobilization density and hybridization efficiency 



www.manaraa.com

55 

 

 

whereas at lower immobilization densities, spatial arrangement of hybridized chains need to be 

considered in determining the cantilever deflection. 

 

Introduction 

Microcantilever based sensors are an intriguing new alternative for conventional 

chemical and biological sensors because of their extremely high sensitivity and miniature sensing 

elements.  The sensing strategy involves coating one surface of a micromachined cantilever with 

a receptor species that has high affinity for the analyte molecule.  Binding of the ligand on the 

sensitized surface induces a mechanical deformation of the microcantilevers thus transducing the 

surface chemical reaction into a measurable quantitative signal.  Thundat and his colleagues 

(Thundat, Warmack et al. 1994) made the seminal observation that Atomic Force Microscope 

(AFM) cantilevers deflect due to changes in relative humidity and thus opened a myriad of 

possibilities for the use of AFM cantilevers for chemical and biological sensing. They predicted 

possibilities of adsorbate detection of the order of picograms and immediately followed up with 

another study in which they detected mercury adsorption on cantilever from mercury vapor in air 

with picogram resolution (Thundat, Warmack et al. 1994, Thundat, Wachter et al. 1995). Since 

these initial reports, microcantilever-based sensors have been investigated for sensing of 

chemicals (Tamayo, Humphris et al. 2001, Lavrik, Sepaniak et al. 2004), DNA hybridization 

(Fritz, Baller et al. 2000, Hansen, Ji et al. 2001, Wu, Ji et al. 2001, Alvarez, Carrascosa et al. 

2004, Stachowiak, Yue et al. 2006, Kang, Nilsen-Hamilton et al. 2008, Jin, Shin et al. 2009, 

Kang, Nilsen-Hamilton et al. 2009), explosives (Thundat, Pinnaduwage et al. 2004, Zuo, Li et al. 

2007, Seena, Rajoriya et al. 2010), biomolecules (Ilic, Czaplewski et al. 2001, Raiteri, Grattarola 
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et al. 2001, Wu, Datar et al. 2001, Arntz, Seelig et al. 2003) , and markers for cancer (Hood, 

Heath et al. 2004, Ferrari 2005, Sengupta and Sasisekharan 2007). 

DNA hybridization is a simple and prominent example of biomolecular recognition and 

detection, since it is fundamental to most biological process. Fritz et al. (Fritz, Baller et al. 2000) 

monitored hybridization of surface immobilized single stranded DNA (ssDNA) with 

oligonucleotide length of 12 nt, and with 3 different concentration values of the target ssDNA 

molecules (80nM, 400nM, and 2000nM). Cantilever deflections of about 3 nm, 15 nm, and 21 

nm were reported respectively.  Cantilever deflection was also found to be different for  

hybridization of ssDNA with strands that had single base-pair mismatch, indicating that 

microcantilever based sensors have intrinsic sensitivity to detect single nucleotide 

polymorphisms. Since this work, cantilever deflection due to ssDNA hybridization has been 

utilized as an validation experiments for new techniques, and cantilever deflection signal up to 

~100 nm have been reported for those experiments (Wu, Ji et al. 2001, McKendry, Zhang et al. 

2002, Stachowiak, Yue et al. 2006, Kang, Nilsen-Hamilton et al. 2008, Kang, Nilsen-Hamilton et 

al. 2009) .   

Hansen et al. (Hansen, Ji et al. 2001) also demonstrated that hybridization induced 

cantilever deflection can be used to discriminate base-pair mismatches with 20- and 25-mer 

probe DNA molecules.  They used 10-mer DNA oligonucleotides as complementary target 

molecules which contain one or two internal mismatches. The results showed that the number 

and position of mismatch pairs will affect the deflection of the cantilever. 

Stachowiak and co-workers (Wu, Ji et al. 2001, Stachowiak, Yue et al. 2006) conducted 

experiments to investigate the influence of ssDNA strand length, immobilization density and 

hybridization efficiency on the hybridization induced microcantilever deformation.  The salt 
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concentrations in immobilization and hybridization buffer were varied to achieve different 

immobilization density and coverage of hybridized molecules, respectively. Changing the salt 

concentrations from 0 to 1000 mM resulted in an increase in immobilization density from 0.06 to 

0.12 nm-2 and similar change of salt concentration in hybridization buffer resulted in an increase 

of hybridization efficiency from 30% to 80%. Three different molecular lengths of 10 nt, 20 nt, 

and 30nt were used and both immobilization density and coverage of hybridized molecules 

decreased as the chain length increased.  Hybridization induced cantilever deflections 

corresponding to different chain lengths, immobilization densities and hybridization efficiencies 

collapsed on to a single curve when expressed as a function of the coverage of hybridized chains.  

These results indicated that the effects of the immobilization density, hybridization efficiencies 

and chain length are coupled and the cantilever deflection primarily depends on the surface 

coverage of hybridized chains. 

In order to explain the underlying mechanism for hybridization induced deflection,  Fritz 

(Fritz 2008) hypothesized that  the cantilever deflection is result of two competing mechanism: 

electrostatic repulsion between negative charges on the DNA strands and relaxation of steric 

hindrance as disordered ssDNA transition to ordered DNA strands.  The increase in negative 

charges during hybridization results in an expansion of the cantilever surface due to the 

electrostatic repulsion and consequently, bending of the cantilever. Alternatively, when surface 

bound single stranded oligonucleotide undergo hybridization, conformational changes from a 

disordered strand to rod-like double helix result in relaxation of the steric hindrance and 

contraction of the surface. The competing mechanisms were proposed to explain cantilever 

bending observed during hybridization experiments.  During the initial phase of DNA 

hybridization the relaxation of steric hindrance leads to relaxation of cantilever bending but as 
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the hybridization proceeds, the surface starts expanding due to buildup of charge interactions 

among neighboring molecules. However, it is important to note that the DNA hybridization 

experiments are performed in buffers with high salt concentrations.  The positive ions in the 

solutions may shield the electrostatic repulsion between the strands and the magnitude of inter-

chain repulsion may depend on the ionic composition of the hybridization buffer.   

Besides the electrostatic effects, hydration forces between the chains may also lead to 

hybridization induced cantilever deflection (Strey, Parsegian et al. 1997, Strey, Parsegian et al. 

1999, Hagan, Majumdar et al. 2002). To study the effect of the hydration forces, Mertens et al. 

(Mertens, Rogero et al. 2008) conducted experiments to investigate the influence of relative 

humidity on deflection of micro-cantilevers immobilized with ssDNA and double stranded DNA 

(dsDNA). Deflection of cantilevers with ssDNA and dsDNA strands increased to about 500 nm 

and 600 nm, respectively as the relative humidity was changed from 0 to 100%.  These results 

indicate that hydration forces play an important part in determining cantilever deflection.  

Hagan et al. (Hagan, Majumdar et al. 2002) modeled the hybridization induced cantilever 

deflections based on both electrostatic repulsions and hydration forces between DNA strands.  

The microcantilever was modeled as a membrane and the DNA strands were modeled as straight 

rods immobilized on the membrane surface.   Repulsive interactions between the DNA strands 

lead to increase in their spacing and rotation of rods, resulting in cantilever bending.  Cantilever 

deflections due to a high immobilization density of 0.17 chains/nm2 and hybridization efficiency 

of 100% were investigated. Based on the numerical results it was concluded that the cantilever 

deflection induced by uniformly distributed DNA strands is much smaller in magnitude 

compared to experimental observations.  However, numerical prediction based on disordered 
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arrangement of DNA strands and 100% hybridization efficiency was found to match the 

experimental observations. 

In this paper, we report a model for hybridization induced bending of micro-cantilever 

based on the minimization of energy functional that accounts for cantilever bending energy and 

DNA inter-chain interactions. Influence of different immobilization densities, hybridization 

efficiencies and chain distribution on the cantilever bending is considered.  Cantilever is 

idealized as a beam while the energy of DNA is estimated using interaction potentials that 

account for both electrostatic and hydration forces. Predicted results are compared to 

experimentally reported deflections to identify the influence of immobilization density, 

hybridization efficiency and chain distribution on cantilever deflection. 

 

Theoretical Model 

The microcantilever is modeled as a slender multilayer beam as schematically 

represented in Figure 17 and consists of three layers: the SiNx base layer, the gold (Au) layer for 

biomolecule immobilization and the immobilized DNA strands.  The total energy of the DNA-

cantilever system is consisted of two major parts, the bending energy of the cantilever and the 

inter-chain energy between DNA molecules. 

 
 

(17) 
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Figure 17. Cantilever bending model in the simulation. 

 

The gold film thickness is much smaller than overall thickness and in addition elastic 

modulus of gold is of the same order of magnitude as that of the base silicon nitride therefore the 

cantilever is modeled as a monolithic linear elastic material in order to simplify the bending 

energy expression. The bending energy of the cantilever, denoted by Ebend, can be expressed as a 

function of the equilibrium radius (R) with the cantilever plane stain elastic modulus and 

thickness (t) (Ibach 1997) 

 
 (18) 

where 
2

2

L
R


 , E is the modules, L is the length of the cantilever, ν is the Poisson Ratio, δ is the 

cantilever deflection. 

The total energy of DNA molecules is modeled as the sum of the pair interaction energy, 

and thus is a function of three groups: the interaction between hybridized dsDNA molecules (D-

D), between hybridized ds DNA and ssDNA (D-S), and between ssDNAs  (S-S). 
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  (19) 

Strey et al. (Strey, Parsegian et al. 1997, Strey, Parsegian et al. 1999)showed that the 

energy of D-D interaction is far higher than that of D-S and S-S interactions. As a result, the 

energy from D-S and S-S interactions is neglected, and the total energy of DNA molecules is 

simplified to be a function only of D-D interactions. 

  (20) 

Strey et al. (Strey, Parsegian et al. 1997, Strey, Parsegian et al. 1999) proposed the 

functional form for the interaction energy based on the analysis of nematically ordered polymers.  

The function form was derived considering the direct interactions  between molecules and the 

harmonic entropic fluctuation part.  

 

 
(21) 

where  is the Boltzmann constant, T is the temperature,   is the persistence length of the 

DNA molecules,  denotes the intrinsic bending stiffness of the DNA molecules, and 

the parameter c is an empirical determined dimensionless constant of order 1.  The free energy 

F0 is the summation of all molecular interaction between DNA molecules as a result of the 

solvent-mediated interactions (hydration forces) and electrostatic repulsions. 

A systematic study of the electrostatic energy between two rod-like molecules with 

surface charges has been reported by Brenner et al. (Brenner and Parsegia.Va 1974). They did 

theoretical calculations for two molecules with different configurations and at all mutual angles. 

Following their analysis, the functional form of the free energy per unit length between 

hybridized DNA molecules resulting from the electrostatic repulsions is expressed in equation 

(22). 



www.manaraa.com

62 

 

 

Hydration forces are attributed to hydration bonding network between neighboring DNA 

strands in water. Leikin et al (Leikin, Parsegian et al. 1993) reported that dsDNA is surrounded 

by at least two hydration shells which contain about 20 water molecules per base pair. This leads 

to a strong repulsion between DNA molecules when the separation is within several decay length. 

They also suggested that the free energy per unit length due to hydration forces between rod–like 

molecules should be of the same form as the electrostatic repulsions.  

The DNA molecules used in the cantilever experiments are usually less than 50 

nucleotide long (< 17 nm) and are considerably short compared to the persistence length of 

double strand DNA (Smith, Cui et al. 1996). As a result, the hybridized DNA molecules can be 

treated as rods or cylinders standing on the surface of the micro-cantilever. With the parallel rods 

assumption, the energy of electrostatic repulsion and hydration forces per unit length can be 

written as (Brenner and Parsegia.Va 1974) 

 

 
(22) 

where λD and di are the decay length and the axial separation between molecules respectively, a 

is determined by the salt concentration in the solution experimentally.  Similarly, the expression 

for the hydration force induced interactions is expressed as: 

 

 
(23) 

where λH (~0.29 nm) is the correlation length (decay length) of water, and b is also determined 

empirically. So the final free energy for a pair of DNA molecules (F0 in Strey’s equation (Strey, 

Parsegian et al. 1997, Strey, Parsegian et al. 1999)) is written as: 
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(24) 

The DNA molecules are initially considered to be standing parallel on the surface of the 

cantilever. As the separation between DNA chains is increased, F0 decays exponentially.  Since 

the DNA strands are only immobilized on the top surface of the cantilever, increase in DNA 

separation will lead to cantilever bending.  Since the length of DNA strands (h = several nm) is 

two order of magnitude smaller than the cantilever thickness (t = 500-1000 nm), cantilever 

deflections of the order of 10-100 nm will only result in small rotations of the DNA strands. 

Therefore, the DNA strands are assumed to stay nearly parallel throughout the cantilever 

deflections.  The relation between inter chain separation and radius of curvature of the bent 

cantilever is expressed as 

 
 (25) 

 

where  is the initial separation before cantilever bending, and i denotes the ith molecule pair. 

As a result, the total energy of the system which is the summation of the cantilever 

bending and total free interaction energy is a function of the initial ensemble of hybridized DNA 

molecules and equilibrium radius of the cantilever. 

 
 

(26) 

 

The total energy is minimized to determine the equilibrium radius of curvature for 

different ensembles to investigate the effect of different immobilization and hybridization 

efficiencies. 
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Initial DNA Ensembles 

In the cantilever bending experiments, the ssDNA molecules are first immobilized on the 

cantilever with a certain immobilization density.  Subsequently, a certain percentage of ssDNA 

chains (quantified by the hybridization efficiency) bind with the complementary targets forming 

hybridized dsDNA chains leading to cantilever bending.  The number of the hybridized dsDNA 

chains on the surface is determined by the immobilization density and hybridization efficiency 

while their arrangement will depend both on the spatial distribution of DNA chains during 

immobilization and hybridization steps.  The immobilization density and hybridization efficiency 

may be experimentally determined but it is hard to directly measure the chain arrangement on the 

cantilever surface.  For a given hybridization and immobilization efficiency, four different 

ensembles of hybridized DNA chains are constructed in order to determine the influence of 

spatial arrangements on the hybridization induced cantilever bending.  Each ensemble consisted 

of 1600 DNA chains.   

In the first ensemble (average spacing), the hybridized chains were assumed to be 

arranged in a hexagonal close packed arrangement with uniform spacing.  Hexagonal closed 

pack arrangement were created from the given immobilization density (d0) and hybridization 

efficiency (φ). The interchain spacing was computed to match coverage of hybridized chains (d), 

calculated according to the following equation: 

  (27) 

Close-packed hybridized dsDNA ensembles were generated for the desired coverage of 

hybridized chains and the cantilever deflections were computed through minimization of bending 

and hybridized dsDNA interaction energy.  
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Although the close-packed distribution of hybridized dsDNA is easy to construct, it 

neglects most details in the real experiments. The first ensemble simply combines the two steps 

together and may not represent the real surface arrangement of hybridized dsDNA chains. The 

immobilization and hybridization steps were considered separately in generating the next three 

ensembles of hybridized dsDNA chains.   

In the second ensemble (random selected), the ssDNA were assumed to be immobilized 

on the surface with hexagonal closed pack spacing.  Distribution of hybridized dsDNA was 

generated assuming that all the immobilized ssDNA chains have equal probability for 

hybridization.  A certain proportion of the ssDNA chains were randomly selected and converted 

to hybridized dsDNA in order to match the required hybridization efficiency.  Random selection 

is the simplest way to make an ensemble which has high degree of disorder due to the 

hybridization.  Five hundred different ensembles were generated for each immobilization and 

hybridization efficiency and the cantilever deflections were computed for each ensemble through 

minimization of the bending and hybridized dsDNA interaction energy.  

In the third ensemble (Monte-Carlo selected), the ssDNA were again assumed to be 

immobilized on the surface with hexagonal closed pack spacing however the hybridized dsDNA 

distributions were generated assuming that hybridized sites will be distributed on the surface 

such that interaction energy between the ssDNA chains is minimized.  A Monte-Carlo method 

based procedure was used to identify the distribution of hybridized dsDNA sites that have the 

lowest interaction energy for hybridized dsDNA chains.  In each step of the energy minimization 

procedure, a single hybridized and non-hybridized site were selected for exchange and this 

exchange was accepted or rejected depending on the change in interaction energy and acceptance 

probability.   This process was repeated for approximately 106 steps till the total interaction 
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energy does not have any further reduction.  The hybridized dsDNA distributions corresponding 

to minimum interaction energy were used to compute the cantilever deflections for different 

immobilization densities and hybridization efficiencies. 

In the fourth ensemble (Gaussian disordered), the chain distributions computed through 

Monte-Carlo based energy minimization were perturbed by imposing a random displacement at 

each hybridized dsDNA sites.  The random displacements followed a Gaussian distribution with 

a mean value of zero and a range specified as fraction of interchain separation. In the random 

selected and the Monte-Carlo selected ensembles (discussed above) ssDNA chains are assumed 

to immobilize in a hexagonal close packed arrangement on the cantilever.  Therefore, ensembles 

with different range of perturbations were used for computing the cantilever deflection in order 

to investigate the influence of disorder magnitude on hybridization induced bending.  

 

Cantilever Bending Computation 

Cantilever deflections are computed through minimization of the total bending and 

hybridized dsDNA interaction energy given in equation (17). A function minimization program 

is taken to minimize the total energy and the stable state is achieved (Shor 1985).  The cantilever 

deflections are computed for hybridized dsDNA strands of three different lengths, 10-, 20-, and 

30-nt, immobilization densities varying from 0.046 to 0.171 nm-2, and hybridization efficiencies 

varying from 10% to 100%.  The combination of chain lengths, immobilization densities and 

hybridization efficiencies are specified in Table 1.  For each case, cantilever deflections were 

computed for all the different ensembles of hybridized dsDNA (discussed above) In order to 

obtain statistically significant trends, 500 different realizations were generated for random 
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selected and Gaussian disordered arrangements and the average cantilever deflection were used 

to eliminate the influence of random selection. 

 

Simulation Results and Discussions 

Representative distribution of hybridized dsDNA chains corresponding to immobilization 

density of  0.13 nm-2 generated and hybridization efficiency of 50% for the four different 

ensembles are presented in Figure 18.  In order to quantify the chain distributions and to verify 

the underlying assumptions for the different ensembles, the average occupation density of 

nearest neighbor sites by hybridized dsDNA chain was calculated as the ratio of hybridized 

dsDNA chains to the total number of possible sites at that neighbor level and is plotted in Figure 

19  for each of the ensembles.  

 

• Figure 18. Representative realization of hybridized DNA ensembles for hybridization 

efficiency of 50%: A) average spacing ensemble; B) random selection ensemble; C) 

energy minimization ensemble; D) Gaussian perturbation ensemble. 
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In first ensemble shown in Figure 18(a), all the hybridized DNA strands are arranged in 

hexagonal closed packed manner. Since the first ensemble is based on combining the 

immobilization and hybridization procedures together, all the neighbor sites are filled as shown 

in Figure 19 and we refer to this ensemble as “average spacing” ensemble.  The nearest neighbor 

distances decrease with increase in hybridization efficiency as shown in Equation (27).  

 

Figure 19. occupation density for each neighbor level for three ensembles with hybridization 

efficiency of 50%. 

 

The second ensemble (random selected) shown in Figure 18(b) is generated assuming a 

uniform immobilization of ssDNA and equal probability of hybridization for all the sites.  The 

generated ensembles show clusters of hybridized chains which results in a range of interchain 

separations.  The occupation density of neighbor sites plotted in Figure 19 is uniform for all 
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hybridization efficiencies confirming the modeling assumption that all sites have equal 

probability for hybridization. 

The third ensemble (Monte-Carlo selected) shown in Figure 18(c) is generated based on 

assumption that ssDNA chain will hybridize in a manner that minimizes the interaction energy 

between the hybridized strands.  The energy minimization produces a more ordered pattern of 

hybridized dsDNA distribution in comparison to the second ensemble with a similar range of 

interchain separations.  The neighborhood occupation density shown in Figure 19 is lower for the 

close neighbors and increases for higher order neighbors. 

The fourth ensemble (Gaussian disordered) is generated through spatial perturbations of 

hybridized chain positions calculated in the third ensemble.  Representative ensemble plotted in 

Figure 18(d) corresponds to a perturbation of 20% of the ensemble plotted in Figure 18(c).  

Similar ensembles with different range of spatial distribution were generated to investigate the 

influence of spatial disorder on the hybridization induced bending.  The perturbed hybridized 

dsDNA arrangement does not have a clear definition of neighbor orders and neighbor separation 

values, therefore the neighborhood occupation density was not calculated for this arrangement. 

Table 3. Parameters used in cantilever deflection predictions 

ensembles 
immobilization 

density (nm-2) 

hybridization 

efficiency 

length of 

DNA 

number of 

simulations 

standard 

deviation 

average spacing 

0.046 - 0.171 10% - 100% 
10-, 20-, 

and 30-nt 

1 

N/A Monte-Carlo selected 1 

random selected 500 

Gaussian disordered 500 5% - 25% 

 

According to the experiment reports, in our simulations we considered immobilization 

density range of 0.046 – 0.171 nm-2, hybridization efficiency range of 10-100%, and a chain 
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length range of 10-30 nucleotides. The standard deviation values of the Gaussian disorder 

ensembles are taken from 5% to 25% of the initial separation values.  

In our computational framework, predicted cantilever bending is linearly dependent on 

the chain length because the DNA strands are assumed to stay nearly parallel throughout the 

cantilever deflections.  Predicted cantilever bending is normalized with DNA chain length in 

order to simplify the discussion of computational results. 

Normalized cantilever bending calculated for immobilization density of 0.13 nm-2, is 

plotted as a function of hybridization density in Figure 19(a) for the four different ensembles.  In 

addition, the normalized bending predictions for hybridization efficiency of 50% are plotted as a 

function of immobilization densities in Figure 19(b) for the four different ensembles.  In the case 

of random selected and Gaussian disordered ensemble, average of bending predictions from 500 

different ensembles is plotted and error bars correspond to total range of the spread in the 

predictions.  

In all cases, cantilever deflection increases with increase in hybridization efficiency.  

Initial immobilization density is one of the dominant factors that affect the induced cantilever 

deflection. When the immobilization density is small, the hybridized chains have large 

separations and the predicted deflections are almost negligible for all the four ensembles.  As the 

immobilization density increases, the deflection results increase exponentially with increase in 

immobilization density. 

Predictions from first three ensembles are similar in magnitude with the smallest 

deflection predicted for fully packed hexagonal arrangement of hybridized chains (average 

spacing ensemble) and largest deflections for random selected ensemble in which single stranded 

chains have equal probability for hybridization.  Predictions corresponding to Monte-Carlo 
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selected ensemble that corresponds to hybridization of single stranded chains with minimum 

interaction energy lie in the middle of the first two ensembles.  The interaction potential due to 

hydration and electrostatic repulsion has an exponential dependence on the hybridized chain 

spacing and thus the bending results are dominated by chains in close proximity to each other.  

The bending predictions are higher for ensembles that have large range of intrachain spacing.  At 

low hybridization density, the predictions from Monte-Carlo selected ensemble are close to that 

of average spacing ensemble as the hybridized chains are spaced apart but at the high 

hybridization density, the predictions from random selected and Monte-Carlo selected ensemble 

start converging as hybridized chains have to be in closer proximity.   Cantilever predictions 

corresponding to the first three ensembles converge to same value as the hybridization efficiency 

approaches 100% because at full coverage all three ensembles are exactly the same.   

For all hybridization efficiencies and immobilization densities, predictions based on the 

Gaussian disordered ensemble are consistently higher than all other ensembles.  Random spatial 

perturbations used to generate the fourth ensemble increase the range of intrachain spacing and 

ensure that significant number of hybridized chains is within one decay length of the interaction 

potential.  As shown in the Figures 20(a) and (b), bending predictions are strongly dependent on 

the range and distribution of hybridized chain spacing in an ensemble.  For the same 

immobilization density and hybridization efficiency, the  ensemble with perfect arrangement has 

the smallest predicted displacements and the predicted displacement increase as the chain 

distribution becomes more disordered  from third to second and fourth ensemble.  The disordered 

ensembles predict much higher deflection values than the non-disordered ensembles due to the 

large entropy in hybridized chain arrangement. 
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Figure 20. Normalized deflection predicted for the four different ensembles. (a) 

Deflections as a function of hybridization efficiency for immobilization density at 0.13 nm-2; (b) 

Deflections as a function of immobilization density for hybridization efficiency at 50% 

 

In order to further examine the influence of arrangement disorder on the predicted 

deflection, the ratio of predicted displacements from spatially perturbed ensemble (Gaussian 

disordered) and unperturbed ensemble (Monte-Carlo selected) are plotted as a function of the 

reciprocal of immobilization density in Figure 21 for different range of spatial perturbations.  As 
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shown in the Figure 21, increasing the range of spatial perturbations or disorder in the hybridized 

chain arrangement increases the predicted displacement.  The increase in predicted displacement 

is also strongly dependent on the initial immobilization density.  For smaller immobilization 

density, increasing the range of perturbation from 5% to 25% of immobilized chain separation, 

increases the predicted displacement from about 5 times to 200 times the deflection predicted for 

third ensemble.  However for larger immobilization density, increasing the range of perturbation 

from 5% to 25%, results in increased displace from about 5 times to 30 times the deflection 

predicted for third ensemble.  In addition, the increase in predicted displacements has a linear 

dependence initial separation of ss DNA chains for a fixed range of spatial perturbations as 

indicated by the linear fit plotted in Figure 21.  The slope of linear fits increases with range of 

spatial perturbations imposed on the ensembles.  The increase in displacements clearly highlights 

the importance of disorder in chain arrangement on the predicted displacements. 
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Figure 21. Influence of spatial perturbation on predicted cantilever deflections. 
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Comparison of Numerical Prediction with Experimental Reports 

Numerical predictions of cantilever bending are compared to the reported experimental 

measurements for different immobilization densities, hybridization efficiencies and chain lengths 

in order to demonstrate the efficacy of our modeling assumptions.  Early reports on experiments 

gave high immobilization densities in the range of 0.13 – 0.17 chains/nm2 (Strey, Parsegian et al. 

1999, Wu, Ji et al. 2001), the displacement predictions corresponding to these densities are 

compared to experimental measurements reports (Fritz, Baller et al. 2000, Wu, Ji et al. 2001, 

McKendry, Zhang et al. 2002, Alvarez, Carrascosa et al. 2004, Stachowiak, Yue et al. 2006) in 

Table 4.  With large immobilization densities (> 0.13 nm-2), all three non-disordered ensembles 

can predict cantilever deflections that are comparable to experimentally measured displacements.  

Table 4. Comparison of Numerical Predictions with Experimental Reports 

  

 

Experimental 

results 

Immobilization 

density (nm
-2

) 

DNA 

length 

δ(h/L)
2
 

(10
-5

nm) 

Simulation predictions δ(h/L)
2
 (10

-5
nm) 

Average 

spacing 

Random 

selected 

Monte-Carlo 

selected 

Gaussian 

disordered 

High 

density 

Fritz et al 

(Fritz, Baller 

et al. 2000) 

~0.2 

12-nt ~3 ~1.5 ~5.5 ~4.5 - 

16-nt ~6 ~2 ~7.3 ~5.5 - 

Mckendry et 

al 

(McKendry, 

Zhang et al. 

2002) 

~0.13 

12-nt ~2 ~1.4 ~5 ~4 - 

20-nt ~3 ~2.4 ~9 ~6 - 

Wu et al (Wu, 

Ji et al. 2001) 
~0.15 

20-nt ~3.5 ~2.4 ~9 ~6.5 - 

30-nt ~8.5 ~3.7 ~1.4 ~1 - 

Alvarez et al 

(Alvarez, 

Carrascosa et 

al. 2004) 

~0.13 12-nt ~2.5 ~1.4 ~5 ~4 - 

Low 

density 

Stachowial et 

al 

(Stachowiak, 

Yue et al. 

2006) 

0.01 - 0.1 

10-nt 8.5~18.5 ~0.05 ~0.1 ~0.08 7~17 

20-nt 4~12 ~0.095 ~0.2 ~0.17 5~12 

30-nt 1~3 ~0.15 ~0.35 ~0.25 5~8 

 

The simulations gave a deflection range of 2.0 – 6.2 nm (30% hybridization efficiency) to 

78.30 – 116.48 nm (80% hybridization efficiency) for 10nt DNA. Though no hybridization 
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efficiencies were reported for large immobilization densities, we can predict the experimental 

results within this range. 

Although the simulations can predict the experimental results with large immobilization 

densities, it failed to agree with the reports when immobilization densities are low (< 0.13 nm-2) 

due to the exponential drop of the interaction free energy with immobilized chain separation 

larger than the decay length. Stachowiak et al reported systematic results on the cantilever 

deflection with the immobilization density and hybridization efficiency.  When the initial 

immobilization densities are smaller than 0.13 nm-2, the simulations with non-disordered 

ensembles (First, Second and Third) failed to predict deflections comparable to experimentally 

measured values.  At this immobilized chain separation, the interactions between neighboring 

molecules become weak, and it is expected that hybridized DNA may possibly arrange in more 

disordered arrangements.  As a result, the influence of spatial perturbations was considered to 

predict the cantilever deflection.  

0

10

20

30

40

50

60

70

80

90

0.005 0.015 0.025 0.035 0.045 0.055

ca
n

ti
le

ve
r d

e
fl

ec
ti

o
n

 (n
m

)

Hybridization density (= Immobilization density × Hybridization efficiency) 
 

Figure 22. Comparison of predicted displacement of Gaussian perturbed ensemble with reported 

experimental measurements. [11] 
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Cantilever deflections were predicted for ensembles with increasing spatial perturbations 

in order to match the experimentally measured values for the reported immobilization densities 

and hybridization densities.  Comparison with experimental result indicated the ensembles with 

spatial perturbation ranging from 19% to 21% of immobilized ssDNA separation result in 

bending predictions comparable to measured deflections.  Numerical predictions corresponding 

to disordered ensembles with spatial perturbations of 19%, 20%, and 21% are compared to 

experimental measurements reported in Stachowiak et al. (Stachowiak, Yue et al. 2006).  

Comparison of the numerical predictions and experimental results demonstrates that disordered 

ensembles can be used to predict the cantilever bending for low surface immobilization densities.  

Another observation from the Figure 22 is that smaller magnitude of spatial perturbations are 

required to match the experimental results corresponding to longer chain lengths: 19% for 30 nt 

DNA, 20% for 20 nt, and 21% for 10 nt. Spatial perturbation imposed in the ensemble simulate 

the disorder induced in the surface chain arrangement during immobilization of the ssDNA 

molecules. When the ssDNA molecules are longer, the gyration radius, which is function of the 

number of nucleotides of ssDNA, becomes larger.  Therefore for the same immobilization 

density, the free space between molecules is expected to be smaller for longer DNA chains and 

consequently, the chain arrangement are expected to be less disordered for longer sequences in 

comparison to shorter DNA sequences.  

Comparison of the bending predictions and experimental measurements show that when 

the immobilized chain separation is larger than a threshold (here we picked 3.0 nm, 10 times of 

the decay length), the Gaussian disordered ensemble is needed to be considered due to the large 

free space between molecules. This implies at smaller immobilization densities, the disorder in 
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the hybridized dsDNA arrangement is a dominant factor in determining the cantilever bending. 

For low immobilization density experiments, the spatial disorder may also be influenced by the 

number of nucleotides in the DNA strands and thus more disordered arrangements are required 

to predict deflections for shorter nucleotides.   

For larger immobilization densities ensembles that account for disorder generated during 

hybridization of a closed packed ssDNA are sufficient to predict the deflection range reported by 

Fritz et al. (Fritz, Baller et al. 2000)and Wu et al. (Wu, Ji et al. 2001). Our calculations show that 

with large immobilization densities, the entropy induced by the hybridization method play an 

important role.   

For all the cases, the ensembles based on hexagonal closed packing of hybridized chains 

do not predict cantilever deflections that match reported experimental results. This strong 

dependence of cantilever deflection on spatial arrangement disorder has important implications 

for the design of experiments that employ surface adsorbed receptor molecules. The self-

assembly of immobilized molecules must be carefully controlled for reproducibility and 

reliability of the experiments.  

 

Conclusions 

We presented a model to examine deflections of micro-cantilever resulting from DNA 

hybridization in this paper. An empirical interaction potential for hybridized DNA chains was 

used in the simulation to predict hybridization induced bending.  Cantilever bending was 

predicted based on four different ensembles of hybridized DNA chains arrangement.  Hexagonal 

close packing of hybridized DNA is the simplest ensemble to generate but it neglects the 

immobilization and hybridization induced disorder in the chain arrangements.  Consequently, the 
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hexagonal close packed ensemble results the smallest predictions of cantilever deflections.  

Hybridized DNA ensemble produced through either random selection or ensuring minimum 

interaction energy during hybridization of hexagonally closed packed single stranded DNA 

resulted in larger prediction of cantilever bending. Random selected ensemble has more 

disordered arrangement of chains and higher predicted cantilever deflection in comparison to the 

minimum interaction energy ensemble.  Introducing spatial perturbations in the hybridized 

dsDNA arrangement leads to larger predictions for cantilever bending.  Comparison of numerical 

predictions with reported experimental results indicates the importance of immobilization density 

in determining the arrangement of hybridized DNA chains on the surface as well as the 

hybridization induced bending. At larger immobilization densities or smaller interchain 

separation, predictions based on ensembles with initial uniform immobilization and partial 

hybridization of DNA chains, are able to predict deflections similar to experimental 

measurements.  At smaller immobilization densities or larger interchain separation, only 

predictions based on ensembles with spatial perturbation of hybridized DNA strands can match 

the experimentally measured cantilever deflections.  Comparison of numerical predictions and 

experimental results highlights the importance of immobilization density and spatial disorder 

imposed during immobilization and hybridization on the hybridization induced cantilever 

bending.   
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CHAPTER 6. INFLUENCES OF MOLECULAR CONFIGURATION AND 

CONFORMATION ON CANTILEVER DEFLECTION ASSOCIATED WITH DNA 

HYBRIDIZATION 

 

Modified from a paper to be submitted 

 

Yue Zhao, Kyungho Kang, Pranav Shrotriya 

 

Introduction 

In recent years, Microcantilever based biosensors have been widely studied as label-free 

chemical and biological sensors for molecular detections and recognitions since the initial 

reports(Fritz, Baller et al. 2000, Wu, Ji et al. 2001). The low cost, fast response and high 

sensitivity of the microcantilever based sensor make it a platform for analysis with DNA 

hybridization(Fritz, Baller et al. 2000, Wu, Ji et al. 2001, Hagan, Majumdar et al. 2002, Alvarez, 

Carrascosa et al. 2004, Stachowiak, Yue et al. 2006, Zhang and Chen 2009, Kim, Cho et al. 2010, 

Pei, Lu et al. 2010, Zhang, Chen et al. 2010, Kang 2011, Zhang, Lang et al. 2012, Ghosh, Mishra 

et al. 2014), ligand-receptor binding(Osawa, Takase et al. 2009, Torres-Chavolla and Alocilja 

2009, Seena, Rajoriya et al. 2010, Urwyler, Schift et al. 2011, Zhai, Wang et al. 2012), drug 

discovery(Kang, Nilsen-Hamilton et al. 2008, Kang, Nilsen-Hamilton et al. 2009), and cancer 

cell detection(Hood, Heath et al. 2004, Ferrari 2005, Zhang, Lang et al. 2006, Sengupta and 

Sasisekharan 2007, Shekhawat and Dravid 2013, Wang, Chen et al. 2013) . 
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Hybridization of ssDNA molecules with their complementary oligonucleotides has 

become a simple and prominent example in biomolecular recognition and detection since it is 

fundamental to most biological process. Experimental observations on cantilever deflection 

associated with DNA hybridization were reported by many groups with different experimental 

conditions and different parameters used in the experiments(Fritz, Baller et al. 2000, Wu, Ji et al. 

2001, Hagan, Majumdar et al. 2002, McKendry, Zhang et al. 2002, Alvarez, Carrascosa et al. 

2004, Stachowiak, Yue et al. 2006, Pei, Lu et al. 2010, Kang 2011). The reported results have 

different magnitude due to different immobilization densities and hybridization efficiencies. 

Although it has been years since the first report by Fritz et al. (Fritz, Baller et al. 2000) on 

the cantilever deflection associated with DNA hybridization, the origin of the bending is still not 

clarified. Based on the experimental reports with different conditions, the cantilever deflection 

may derive from hydration forces(Hagan, Majumdar et al. 2002, Stachowiak, Yue et al. 2006, 

Mertens, Rogero et al. 2008), conformational entropy(Wu, Ji et al. 2001), physical steric 

crowding(McKendry, Zhang et al. 2002), and the covalent attachment to the surface(Alvarez, 

Carrascosa et al. 2004). 

Strey et al. (Strey, Parsegian et al. 1997, Strey, Parsegian et al. 1999) proposed a liquid 

crystal model to represent the hybridized dsDNA molecules immobilized on the surface of 

microcantilevers, and established pairwise potential models for dsDNA molecular interactions 

for both electrostatic interactions and hydration forces. While Zhang et al. (Zhang, Tan et al. 

2011) investigated the theories related to interactions of ssDNA immobilized on 

microcantilevers. In their report, they conclude that when the immobilization density of ssDNA 

is low, the interaction energy between neighboring molecules will be too weak to be dominant. 
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We modeled the DNA hybridization induced cantilever deflection considering the 

distribution of DNA strands(Zhao, Ganapathysubramanian et al. 2012). A beam bending model 

was proposed for the system with the microcantilever modeled as a beam and the dsDNA strands 

modeled as straight rods immobilized on the beam surface with designated distributions. Four 

different distributions of DNA ensembles were proposed and investigated: average-spacing, 

random selected, Monte-Carlo selected, and Gaussian disordered. We showed with simulations 

that the influence of the molecular distribution of immobilized DNA on the surface of the 

microcantilevers. The commonly used average spacing distribution underestimated the 

importance of the disorder and provided deflection predictions lower than actual observations. 

The two-step determined distributions were more suitable, and the magnitude of the disorder was 

affected by the immobilization density and hybridization efficiency of the system. 

In this paper, we report an energy model for DNA hybridization induced bending of 

microcantilevers. Influence of different immobilization densities, hybridization efficiencies, and 

molecular configurations on the cantilever bending is considered. Predicted results are compared 

to experimentally reported deflections to identify the influence of different factors on the 

cantilever deflection. 

 

Experimental Observations 

Since the initial reports(Fritz, Baller et al. 2000, Wu, Ji et al. 2001) on the cantilever 

deflection induced by the hybridization of immobilized ssDNA, ssDNA hybridization has been 

utilized as a validation experiments for new techniques. Many experiments have been reported 

by different groups with different immobilization densities, hybridization efficiencies, and 

molecular conformations(Wu, Ji et al. 2001, McKendry, Zhang et al. 2002, Stachowiak, Yue et al. 
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2006). Typically the procedure of the DNA hybridization induced deformation experiments are 

conducted as two steps: sensor functionalization and DNA hybridization (Figure 23). ssDNA 

molecules are immobilized on the cantilever surface in the functionalization step, and 

complementary ssDNA molecules with certain concentrations are introduced to the sensors. 

During the hybridization procedure, the surface stress of the microcantilever will change and the 

bend the cantilever accordingly with Stoney’s formula(Stoney 1909). 

 
 

(27) 

where E is the modules, ν is the Poisson Ratio, R is the equivalent radius of the curvature, t and L 

are the thickness and length of the cantilever respectively, and δ is the cantilever deflection. 

 

Figure 23. Illustration of cantilever functionalization and DNA hybridization procedures of 

microcantilever based sensor 

 

Different magnitudes of surface stress change observations are collected with different 

target concentrations among groups (Figure 24(a)). Large variations of surface stress results are 

reported among groups and confirm that the target concentration is not the factor driving 

different magnitudes. It is generally accepted that the cantilever deflection is due to the DNA 

hybridization on the surface so that the number of hybridized DNA molecules should be 
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essential. Therefore deflection results are studied with respect to the hybridization densities 

(Figure 24(b)). Four groups of experimental results are categorized based on different magnitude 

of hybridization densities. In each group the surface stress change is increasing with the 

hybridization density, but in a bigger map, lower hybridization density will lead to higher surface 

stress change. Since it is widely accepted that the cantilever deformation is due to the 

interactions associated with hybridized DNA molecules, higher surface stress changes would be 

expected when higher hybridization densities are reported. However, Figure 24(b) shows that the 

overall trend is opposite among the four different groups with greater surface stress change at 

lower hybridization densities. 
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Figure 24. Collections of experimental observations: (a) surface stress change vs. final target 

concentration; (b) surface stress change vs. hybridization density. 
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Distributions and Configurations of Hybridized DNA 

Godin et al. (Godin, Williams et al. 2004) reported their observations on molecular 

configurations of alkanthiol self-assembled monolayers on gold-coated surface associate with 

immobilization density that immobilized molecules will rest in different phases, lying-down or 

standing-up phases, according to the magnitude of immobilization density. As a result, the 

molecular separation and length scales of DNA molecules are essential to the configurational 

study. Based on this consideration, molecular configurations are investigated associated with 

distributions and length scales of hybridized DNA to understand the mechanism underlying DNA 

hybridization induced deformation. 

Molecular separations between hybridized DNA molecules are related to the distribution 

of DNAs which is controlled by two major factors, immobilization density and hybridization 

efficiency. We (Zhao, Ganapathysubramanian et al. 2012) have reported the investigation on four 

ensembles of different spatial considerations: average spacing, random selection, energy 

minimization, and Gaussian perturbed ensembles. Hexagonal closed-packed arrangement was 

considered as the baseline of all ensembles. The average spacing ensemble assumes uniform 

spacing for all hybridized dsDNAs for given hybridization density. All the other three ensembles 

considered two steps, immobilization and hybridization, separately to generate DNA ensembles. 

ssDNAs were assumed to be immobilized on the surface with hexagonal closed packed 

arrangement, and distribution of hybridized dsDNA was then generated. The ds DNA distribution 

of the random selection ensemble assumes that all immobilized ssDNA have equal probability 

for hybridization, while that of energy minimization ensemble assumes that hybridized dsDNA 

will be distributed such that the chain-chain interaction energy is minimized. The Gaussian 
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perturbed ensemble perturbs the chain distribution of energy minimization ensemble by using a 

random displacement at each hybridization dsDNA site. 

All four ensembles are evaluated with different immobilization densities and 

hybridization efficiencies (Figure 25). Average spacing ensemble is simplest to generate but 

neglects the immobilization and hybridization induced disorder in chain arrangement. Both 

ensembles produced through either random selection or energy minimization are more 

reasonable and provide better predictions for experiments with high immobilization densities. 

When the immobilization density gets lower, the initial spatial separation become larger and 

DNA molecules are more possible to move near the desired positions. Therefore, a Gaussian 

spatial perturbation of hybridized dsDNA will be required to present the greater disorder in the 

ensemble. 

 

Figure 25. Four typical DNA ensembles used in DNA hybridization simulations: (A) average 

spacing, (B) Random selection, (C) Energy minimization, and (D) Gaussian-perturbed 
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The configurations of dsDNA on the cantilevers surface are controlled by immobilization 

methods and molecular separation between DNAs (Figure 26). The regular immobilization 

approach which is most used is the single-thiolated approach, i.e. the receptor ssDNAs are 

functionalized with thiolgroups on only one end of the molecules and then immobilized on the 

surface. An alternative approach, double-thiolated approach(Kang 2011) is that the receptor 

molecules are functionalized with two thiolgroups on both ends of the ssDNAs and immobilized 

on the surface on both ends. The hybridized dsDNA molecules will have different configurations 

with different immobilization approaches. The dsDNAs with double-thiolated approach are 

restricted close to the surface and have little freedom to move, while dsDNAs with single-

thiolated approach have only one end attached to the surface and the other end is free to move. 

Thus the single-thiolated dsDNAs are more flexible and have different configurations according 

to the immobilization densities. When the immobilization density is low and the molecular 

separations are large, the molecules will prefer to rest in the lying-down phase due to the surface-

molecule attractions, and when the immobilization density is high and the molecular separations 

are small, the dsDNA molecules will be pushed up to form standing-up configurations due to the 

strong repulsions from the surrounding molecules (Figure 26). 

The determination of the ensembles and molecular configurations is controlled by the 

molecular length scales of DNA molecules, including the diameter ( ) and length of the 

hybridized dsDNAs ( ). When the ratio of the smallest separation (d) and molecular diameter 

of dsDNA ( ) is small, the molecules are too close and have no sufficient space to move, 

therefore the hybridized DNA molecules are more likely to form distributions of random 

selection and energy minimization ensembles. While when  is large, the molecules will 

have enough space to move and form distributions of Gaussian perturbed ensembles. When d 
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increases to even larger and is comparable to the molecular length of hybridized dsDNA 

( ), the dsDNA molecules will be far enough to form lying-down configurations. 

 

 

Figure 26. Molecular configurations of hybridized dsDNA molecules due to different 

immobilization conditions 

 

Energy Models and Cantilever Bending Predictions 

The microcantilever system is modeled as a beam consists of three layers: the SiNx base 

layer, the gold (Au) layer, and the immobilized DNA molecules. The total energy of the overall 

system consists of the energy of the cantilever and that from the immobilized DNA layer. During 

the hybridization procedure, the energy change in the system may come from various origins, 

including the elastic bending energy of the cantilever ( ), the chemical energy relaxation due 

to DNA hybridization ( ), the surface energy change of surface reconstruction caused by 

DNA ( ), and the energy associated with chain-surface interactions ( ) and 

chain-chain interactions ( ) respectively. 
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  (28) 

In order to simplify the cantilever system and the bending energy expression, the layer of 

gold film can be negligible, since the thickness of gold film (~20 nm) is far smaller than the 

overall thickness (1000 nm) and the elastic modulus of gold is of the same order of magnitude as 

that of SiNx. As a result, the bending energy of the cantilever can be expressed as(Ibach 1997) 

 

 

(29) 

where E is the modules, ν is the Poisson Ratio, R is the equivalent radius of the curvature, t and L 

are the thickness and length of the cantilever respectively, and δ is the cantilever deflection. 

The chemical energy relaxation due to DNA hybridization ( ) is the dominant 

energy change during the hybridization procedure. It describes the energy released from the 

hybridization of ssDNA into dsDNA, it is the energy driving the reaction to go forward and 

determines the hybridization efficiency. If the hybridization reaction can produce greater energy 

relaxation, the ssDNA molecule will be more readily to be hybridized and become dsDNA, and 

vice versa. As a result, the chemical energy relaxation ( ) is a function of the number of 

hybridized molecules and the chemical energy change of each hybridization reaction. 

The surface energy change of surface reconstruction caused by DNA ( ) is induced 

by the change of the structures of gold surface. Andreoni et al. (Andreoni, Curioni et al. 2000) 

have reported their observations on the surface reconstructions induced by the alkanthiol SAM 

formation based on first principle calculations. They observed that the change of the electrons on 

the surface will lead to the surface expansion and further induce the cantilever deformation. 

When the ssDNAs are hybridized into dsDNAs, the random-coil like molecules are completely 

changed to double helix structures and negatively charged outside. Therefore when the dsDNA 
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molecules are very close to the cantilever surface, the electron density on the surface will also 

change due to the charge effect, and the surface will have strong surface reconstructions 

according which will lead to the cantilever deformation. 

Kukta et al. (Kukta, Kouris et al. 2003) reported their model on the surface defects 

induced surface stress change with a second order assumption considering the energy change 

with respect to the strain. With this assumption, the total surface energy change of surface 

reconstruction ( ) is the summation of the surface reconstruction energy change induced 

by each hybridized dsDNA ( ), which is as a second order function of the surface strain ( ) 

 
 

(30) 

 
 

(31) 

where  and  are the strength factors of the interactions,  is the initial separation between 

immobilized thiolgroups of dsDNA molecule, and  is the interaction area which is a 

function of . 

 The energy change associated with chain-surface interactions ( ) is 

determined by the chain-surface distance. An energy well profile is utilized to describe the chain-

surface energy (Figure 27). From the profile, most single-thiolated cases are in the attraction 

region, and double-thiolated cases are in the repulsion region due to the close distance between 

molecules and cantilever surface. The chain-surface energy change determines the molecular 

configurations on the surface. With single-thiolated cases in the attraction region, the molecules 

are dragged down to the surface as the lying-down configurations because of the interaction 

when the molecules are far away from each other and cannot provide sufficient repulsions, while 
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as the molecules get closer with higher density, the molecule will have repulsions strong enough 

to support the standing-up configurations.  

 

Figure 27. Energy well assumption for interactions between cantilever surface and hybridized 

dsDNA chains 

 

The energy change associated with chain-chain interactions ( ) is the 

summation of the pairwise energy between each pair of DNA molecules ( ).  

 
 

(32) 

Before the hybridization occurred, it is assumed that all the unhybridized ssDNA 

molecules stay in the random coil structures and have weak interactions denoted as . 

After the introduction of the complementary part of ssDNA in the system, certain percentage of 

ssDNA molecules are hybridized and form dsDNA molecules, and the rest ssDNA molecules 

remain unhybridized. Therefore, the total pairwise energy of the DNA ensemble is modeled as 

the summation of all pairwise interactions between unhybridized and hybridized dsDNA 
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molecules, which include the interaction between hybridized dsDNA molecules , 

between hybridized dsDNA and ssDNA , and between ssDNAs . 

 
 

(33) 

Strey et al. (Strey, Parsegian et al. 1997, Strey, Parsegian et al. 1999) showed that the 

interaction energies with unhybridized molecules ( and ) are far smaller than that of 

interactions between hybridized molecules . Therefore, the total in-film energy of DNAs 

before hybridization can be neglected and that after hybridization can be simplified to be a 

function only of interactions between hybridized dsDNA molecules . 

 
 

(34) 

Strey’s potential(Strey, Parsegian et al. 1997, Strey, Parsegian et al. 1999) was applied to 

observe the pairwise interaction energy between molecules (per unit length).  

 

 

(35) 

 
 

      (36) 

 

where di is the axial separation between the lying-down molecules,  is the initial separation 

before cantilever bending,  is the Boltzmann constant, T is the temperature,   is the 

persistence length of the DNA molecules,  denotes the intrinsic bending stiffness of 

the DNA molecules, and the parameter c is an empirical determined dimensionless constant of 

order 1. 
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The free energy F0 consists of hydration forces and electrostatic interactions, both of 

which can be determined semi-empirically. 

 

 

(37) 

where λD and λH are the decay length for electrostatic and hydration forces respectively, a and 

bare strength factors which determined by the salt concentration in the solution empirically.  

The deflection observation is based on the minimization of the total energy change with 

respect to the variation of cantilever curvature. The true deflection will be the value when the 

total energy change reaches the minimized value. Among all the energy components, the 

chemical energy relaxation ( ), as described, is only a function of number of hybridized 

dsDNAs and the chemical energy change of each hybridization reaction. Since the number of 

dsDNAs and the chemical energy change do not change with the curvature in the small curvature 

consideration, the total chemical energy relaxation therefore does not change with the deflection 

and thus not considered in the minimization of the total energy change. The energy associated 

with chain-surface interactions ( ) is determined only by the distance between 

dsDNA molecules and cantilever surface, which is not influenced by the curvature. Thus the 

chain-surface energy, though determines the molecular configuration of dsDNAs, is also not 

considered explicitly in the minimization of the total energy change. 

Therefore, the total energy change considered in the minimization procedure is consisted 

of three components: the elastic bending energy of the cantilever ( ), the surface energy 

change of surface reconstruction caused by DNA ( ), and the energy change associated 

with chain-chain interactions ( ). From equations (29), (31), (35) and (36), all these 
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energy changes are functions of the curvature of the cantilever ( ). The minimization of the 

total energy change in equation (38) will lead to the final cantilever deflections. 

 
 

(38) 

A function minimization program (Shor 1985) is taken to minimize the total energy given 

in equation (38) and the stable state is achieved. The influences of both energy change 

components, surface reconstruction energy ( )and chain-chain interaction energy 

( ), were examined with respect to different immobilization densities (0.012 to 

0.171 nm-2), hybridization efficiencies (10% to 100%), molecular configurations (standing-up 

and lying-down), perturbation levels (0.5 to 1.0 nm), and dsDNA distribution ensembles (random 

selection, energy minimization, and Gaussian perturbed ensembles). In order to obtain statistical 

significant trends, 500 different realizations were generated and the average surface stress was 

used to eliminate the influence of the randomness. 

 

Model Results 

In our computational framework, predicted surface stress change is corresponding to the 

immobilization approaches and molecular configurations. In the single-thiolated approach, both 

standing-up and lying-down configurations are applied according to the immobilization density 

(molecular separation). All dsDNA molecules are assumed to stay parallel throughout the 

cantilever deflections in both standing-up and lying-down configurations. For predictions with 

single-thiolated approach, since the dsDNA molecules are generally rest in the attraction region 

and are away from the cantilever surface with both standing-up and lying-down configurations, 

the interactions between dsDNA molecules and cantilever surface are too weak to produce 

surface reconstruction, and thus the surface energy change due to surface reconstruction 
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( ) can be negligible during the cantilever deflection. Therefore, only the elastic energy of 

the cantilever ( ) and the energy change due to chain-chain interactions ( ) is 

evaluated in simulations with single-thiolated approach. On the other hand, for predictions with 

double thiolated approach, the immobilization density and the hybridization efficiency are both 

very low, so the hybridized dsDNA molecules will be far apart and the energy change due to 

pairwise chain-chain interactions ( ) will be very weak and negligible, while the 

surface energy change due to surface reconstructions will be high due to short distance between 

the cantilever surface and the dsDNA molecules restricted to the surface with both ends. As a 

result, in simulations with double-thiolated approach we will only consider the elastic energy of 

the cantilever ( ) and the energy change due to chain-chain interactions ( ). 

In simulations with single-thiolated approach, the influences of immobilization on 

surface stress change are investigated with all three ensembles (random selection, energy 

minimization, and Gaussian perturbed ensembles) and two configurations (standing up and lying 

down). Surface stress change is plotted as a function of molecular separation in Figure 28 with 

three different ensembles at a hybridization of 50%. Two standard deviation values (0.5 and 

0.866 nm) in Gaussian perturbation are presented, which represent the distances of the first two 

nearest fcc sites on the Au(111) surface(Andreoni, Curioni et al. 2000). Surface stress predictions 

are strongly dependent on the molecular separation and distribution of hybridized chains. In all 

cases, predicted surface stress change decreases with an increase in molecular separation. At the 

same molecular separation and hybridization efficiency, energy minimization ensembles has 

smaller predicted surface stress change than the random selection ensembles as the chain 

distribution of random selection ensembles become more disordered, and Gaussian perturbed 

ensembles predicted consistently higher surface stress change than the other two ensembles due 
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to the large entropy in hybridized chain arrangement. In addition the predictions are greater with 

larger standard deviations in Gaussian perturbed ensembles. 
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Figure 28. Modeling results of surface stress change with considerations of all molecular 

ensembles and configurations for single-thiolated approach 

 

The plot is divided into groups according to different ranges of molecular separation 

based on comparison with length scales of hybridized dsDNA (  and ).When separation 

is small and , the Gaussian perturbed ensembles provide very strong surface stress 

change which indicates the movement of the molecules requires high energy input that the 

molecules are unlikely to form Gaussian perturbed ensembles in this range. As the separation 

increases and , the energy requirement for molecule movement to form Gaussian 

perturbed ensembles decrease, and molecules are more likely to have greater disorder with larger 

molecular separation. When the separation further increase, the surface stress predictions drops 

greatly and all of the three ensembles with standing up configurations predict very small surface 

stress changes (predictions are close to 0 when  nm). When the separation is comparable to 
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the chain length of hybridized dsDNA ( ), the lying down configurations are 

achievable. With the lying down configuration, surface stress change predictions are greater than 

that of standing up configurations with the same immobilization density, hybridization efficiency, 

and Gaussian perturbation. 

In simulations with double-thiolated approach, energy change associated with surface 

reconstructions are investigated with equations (30) and (31). The influences of the interaction 

area are simplified to be proportional to the molecular end to end distance of the hybridized 

dsDNAs. The statistical properties of the distribution of the end to end distance are investigated 

with a ball-chain model with random-walk assumption in half space. Therefore, the energy 

change of surface reconstruction can be expressed as equation (39).The energy change is 

dependent on the total number of hybridized molecules on the surface (N), mean value of end to 

end distances of all hybridized molecules ( ), and the strength factors of a single site of surface 

reconstruction ( a and b). 

 
 

(39) 

The total number of hybridized molecules is determined by both immobilization density 

and hybridization efficiency, or the hybridization density. The distribution of end to end distances 

are observed with 106 realizations of random walk ball chain model in half space, and the 

probability density function is plotted in Figure 29. For DNA molecules with n nucleotides, 

distribution with an average value of  nm and a standard deviation of nm is 

observed. Therefore if considering all DNA molecules have the same probability to be 

hybridized, the surface stress prediction is related to the DNA chain length with . 
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Figure 29. Probability density profile of the distribution of end-to-end distance of ssDNA 

molecules 

 

The influences of the strength factors of a single site, a and b, are investigated 

respectively with DNA molecules with 30 nucleotides, and surface stress changes are plotted 

with respect to hybridization density in Figure 30. The surface stress predictions are dependent 

on the hybridization density and the magnitude of the predictions increases as the hybridization 

density increases in all cases. Strength factor b (Figure 30(a)) controls the linear influence on the 

predictions, and  provides compressive surface stress which drives the cantilever to bend 

downward. As b becomes more negative, the strength of the surface reconstruction induced 

interaction is stronger, and the surface stress predictions are greater. Strength factor a controls the 

non-linear effects on the surface stress change (Figure 30(b)). When a = 0, the predictions will be 

linear with the hybridization density, while when , the non-linear behavior will be obvious. 

In addition, the sign of a determines the slope change of the predictions with respect to 

hybridization density. If , the surface stress change prediction will be a convex function of 

hybridization efficiency, while if , it will be a concave function. This means that when 

, the second order term helps to generate compressive surface stress which will bend the 
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cantilever down more, and vice versa. The actual values of a and b in the model will be 

determined empirically with the reported experimental observations. 
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Figure 30. Effects of strength factors (a and b) on the surface stress predictions: (a) linear effect 

of b; (b) non-linear effect of a. 
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Comparison of Numerical Prediction with Experimental Reports 

Numerical predictions of surface stress change are compared to the reported experimental 

measurements for different immobilization methods, immobilization densities, hybridization 

efficiencies in order to evaluate our models. The comparison of the surface stress change is 

plotted in Figure 31 as a function of hybridization density. Most experiments were conducted 

with single-thiolated approach. Early experimental reports  (Strey, Parsegian et al. 1999, Wu, Ji et 

al. 2001) gave high immobilization densities resulting in molecular separations in the range of 

2.6 to 3.0 nm, the corresponding separation/diameter ratio is less than 1.5, and the 

experiments(Fritz, Baller et al. 2000, Wu, Ji et al. 2001, McKendry, Zhang et al. 2002, Alvarez, 

Carrascosa et al. 2004, Stachowiak, Yue et al. 2006) observed surface stress change from 1.3 to 

6.4 mN/m. The surface stress predictions with these densities are compared to the results. In this 

separation range ( ), random selection and energy minimization ensembles can 

predict surface stress change that is comparable to the reported measurements. The simulation 

gave a surface stress range of 0.42-3.1 mN/m (30% hybridization efficiency) to 10-58 mN/m 

(80% hybridization efficiency) for 10 nucleotides DNA. Though no hybridization efficiencies 

were reported for these small separation cases, the predictions are of similar magnitude as 

reported. 
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Figure 31. Comparison of numerical predictions with experimental reports for all different 

immobilization approaches and densities. 

 

When the molecular separation is larger than 3.0 nm, the predictions with random 

selection and energy minimization ensembles are too small compared to the experimental 

observations. The large separation correspond to separation/diameter ration greater than 1.5, and 

in this range, the interactions between neighboring molecules become weak and the space 

between molecules become large. Therefore it is expected that DNA molecules may be likely to 

have more disordered distributions, and the influence of spatial perturbation was considered. 

Predictions with increasing Gaussian perturbation level were conducted in order to match the 

experimental measurements with reported immobilization densities and hybridization 

efficiencies. The comparison with reported results by Stachowiak (Stachowiak, Yue et al. 2006) 

indicated that the ensembles with perturbation from 0.6 to 1.0nm gave best predictions. Another 

observation is that the perturbation level is controlled by the molecular separation, and the 

perturbation level is greater as the separation increases. When the separation is small and close to 
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3 nm, the spatial perturbation is 0.6 nm which means some molecules may only be able to move 

to the nearest neighboring fcc sites, while when the separation is close to 5 nm, the spatial 

perturbation is 1.0 nm showing that molecules are able to move up to the third nearest 

neighboring fcc sites. 

When the separation is greater than 6 nm, the simulations with Gaussian perturbed 

ensembles also fail to predict surface stress changes comparable to experimental reports. The 

molecules are too far away and the separations are comparable to the chain length of hybridized 

DNA (( ). At this separation, the interactions are very weak between standing up 

molecules, and the separation is sufficient for molecules to lie down, therefore the influence of 

the lying-down configuration was considered to predict the surface stress change. Comparison 

with experimental measurements by Kang(Kang 2011) showed that the Gaussian perturbed 

ensembles with spatial perturbation of 0.86 nm can best match the reported surface stress values. 

This perturbation value indicates that with the lying down configurations, the molecules can 

move up to the second nearest neighboring fcc sites. 

For double-thiolated approach, surface stress change were predicted with increasing 

strength factors (a and b) in order to match the experimentally measured values for reported 

hybridization densities. Comparison with experimental results(Kang 2011) indicated the strength 

factors of  result in predictions comparable to measure surface stress 

change. Comparison of the numerical predictions and experimental results demonstrates that the 

surface reconstruction model can be used to predict the full range of surface stress change value 

for double-thiolated approach.  

Comparison of the prediction and experimental measurements show that, molecular 

separation is important for determination of molecular configurations and distributions. When 
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the molecular separation is small ( ), the free space between molecules is small 

that random selection and energy minimization ensembles with standing up configurations are 

sufficient to predict the surface stress change reported.  

For larger molecular separations ( ), a Gaussian perturb ensemble has to be 

considered due to the large free space between DNA molecules. This indicates that the disorder 

in the DNA distribution is dominant in surface stress change when separation is large, and the 

spatial perturbation level can be influenced by the molecular separation that greater perturbations 

are required for predictions with larger separation. 

When the separations are comparable to the chain length of DNA ( ), the 

free space between molecules is sufficient for molecules to lie down. In this separation range, the 

interactions between molecules are weak that Gaussian perturbed ensembles with standing up 

molecules fail to predict the surface stress change. Lying down configurations of DNA molecules 

has to be considered with Gaussian perturbed ensemble that has similar disorder level to that of 

the standing up configurations. 

For double-thiolated approach, the influences of the molecular separation and distribution 

are negligible due to the low immobilization density and hybridization efficiency. The energy 

change induced by the surface reconstructions is dominant in determining the surface stress 

change. The predictions are controlled by the hybridization densities on the cantilever surface, 

the number of nucleotides in the DNA strands, and the strength of a single hybridized site. 

 

Conclusions 

We presented an energy model to examine surface stress change of a microcantilever 

induced by DNA hybridization in this paper. Different DNA immobilization densities and 
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hybridization efficiencies are investigated with different DNA distributions and configurations. 

Molecular separation between molecules is considered to determine the distribution and 

configuration of hybridized molecules. As the ratio of  increases, greater spatial disorder 

is required to provide higher predictions. When d is comparable to , lying down 

configurations are approachable and considered in surface stress predictions. Comparison of 

numerical predictions and experimental reports indicates the importance of molecular separation 

in determining the distribution and configurations of DNA molecules as well as the surface stress 

change. At smaller separations, the random selection and energy minimization ensembles with 

standing up molecules are able to predict surface stress similar to experimental measurements. At 

large separations, the Gaussian perturbed ensembles with standing up configurations are required 

to match the experimental reports. At even larger separations, the lying down configurations are 

required due to the large free space between molecules. For double-thiolated approach, the 

interactions between molecules are too weak and energy from surface reconstruction is the 

dominant origin that drives the surface stress change and cantilever deflections. 



www.manaraa.com

104 

 

 

 

CHAPTER 7. CONCLUSIONS 

 

MicroCantilever (MC) based sensors are increasingly being used to detect chemical and 

biological species in both gas and liquid environments, and these devices could be developed for 

the use of molecular recognitions. The sensing strategy involves coating one surface of a 

micromachined cantilever with receptor species that has a high affinity for specific target 

ligands. The presence of the ligand is detected by resolving the surface stress change associated 

with absorption/adsorption of receptor molecules immobilized on the sensitized surface. The 

introduction of cantilevers substantially enriches the portfolio of sensing scenarios that can be 

used in high performance miniaturized analytical systems. 

 A miniature sensor consisting of two adjacent micromachined cantilevers (a sensing 

/reference pair) was utilized for detection of target ligands by measuring the differential surface 

stress associated with adsorption/absorption of chemical or biological species on the cantilevers. 

The unique advantages of the surface stress sensor are: 1) differential measurements of surface 

stress eliminates the influence of environmental disturbances such as nonspecific adsorption, 

changes in pH, ionic strength, and especially the temperature; and 2) sensitivity of the sensor is 

independent on the distance between the sensing surface and detectors. Therefore, the sensor is 

being amenable for miniaturization and enables an array of sensors to be easily fabricated on a 

single MEMS device. 

 The threshold sensitivity of the system was improved by utilizing an alternative 

immobilization approach. There have been many attempts to improve stability and sensitivity of 

the sensor such as adding polarizers and isolator or selecting microcantilevers with a high aspect-
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ratio. Not only did we consider this mechanical or optical aspect of the sensor, but we also 

designed a new format of a molecular structure to achieve this goal. First attempt was made by 

attaching a thiol-group on both ends of receptor molecules (ssDNAs) to achieve mechanically 

rigid and stable immobilization on the gold surface of a sensing cantilever. While binding with 

target molecules, double-thiolated receptors may give rise to more stress on the cantilever due to 

configurational change of the receptor molecules and repulsive force between molecules. We 

verified this improvement by comparing the surface stress generation due to single thiolated and 

double thiolated receptors with the same immobilization density; DNA hybridization and 

malachite green (MG)-aptamer binding were utilized as the experiment materials. We observed 

that the activity of hybridization with the double-thiolated poly Acould reduce the sensitivity as 

low as two orders of magnitude in surface stress changes compared with the measurement of a 

single-thiolated poly A, and also reduce the sensitivity by one order of magnitude in surface 

stress changes with double thiolated MG aptamers compared to the single thiolatedaptamers. 

 Simulations were carried out to investigate the mechanism underlying the surface stress 

generation due to different origins, including the immobilization of alkanethiol self-assembled 

monolayers (SAM), and the hybridization of ssDNAs. Simulation models were investigated to 

study the dominant influences on the SAM formation. All atom approach was utilized to 

simulate the potentials of the chemical bonds at atomic level, with bond stretching, bending, and 

twisting, and the long-range weak van-der-Walls forces. Results of the predictions showed that 

the inter-chain and intrachain potentials had very small effects on the cantilever bending. And 

the surface stress change is dominantly due to the surface reconstruction induced by the charge 

redistribution of the gold atoms on the cantilever surface. When the alkanethiol was immobilized 

on the gold surface, the sulfur atom would form a strong bond with the gold atoms on the 
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surface, which would change the electron density of the gold atom, and therefore result in 

surface reconstructions. Two different modified potential models were utilized in the simulation, 

the embedded atom method (EAM) and surface embedded atom method (SEAM). The 

modification of the models were on the electron density, and we assumed the gold atom would 

lose a certain amount of the electrons due to the Au:S bond. The simulation predictions showed 

that SEAM was more suitable for surface problem predictions, and provided more reasonable 

electron loss of the gold atoms. The surface reconstruction was shown to be the dominant effects 

on the surface stress generation, and the surface stress change increased as the surface coverage 

density. 

 In order to investigate the mechanism of the surface stress generation, a beam bending 

model was established based on the total energy of the system. The overall energy consisted of 

the bending energy of the cantilever and the interaction energy induced by DNA hybridization. 

Experimental reports were collected from different groups working with different immobilization 

densities and hybridization efficiencies. The analysis with the experimental observations showed 

that, the surface stress changes would fall into different stages based on the immobilization 

density levels. Three different stages of immobilization were proposed accordingly, the standing-

up stage, lying-down stage, and attachment stage. Among the three different stages, the 

attachment stage was due to alternative immobilization method, with which the molecules were 

immobilized on to the cantilever surface with both ends and thus dragged to the surface. The 

standing-up and lying-down stages were determined by the immobilization density. High 

immobilization density would lead to small molecular distance and strong inter-molecular 

repulsions which would push the molecules to stand up, while low immobilization density would 

provide low inter-molecular forces, and have the molecules to lie down closer to the surface. The 
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molecular distribution of the DNA molecules was proved to be another essential factor on 

surface stress generation. A two-step model to determine the DNA distribution was proposed. In 

this model, the ssDNA was assumed to be immobilized on the cantilever surface based on a 

hexagonal pattern, and the certain amount of DNA molecules were selected to be hybridized 

afterwards. The results showed that the new model could provide better predictions than the 

general average spacing model. Another observation was that the randomness would also play an 

important role in surface stress generation. For high immobilization density, the molecules are 

close to each other and the distribution of the molecules would follow the hexagonal pattern, 

while when the immobilization density became low, the distribution would have more 

randomness, and the randomness came from the distribution of the ssDNA immobilization as 

well as selected sites for the hybridization. Predictions showed that Gaussian perturbation with 

10-20% standard deviation could provide sufficient randomness for the distribution. 

Future work of this study is to expand the measurements and simulations to more 

aptamer/target binding. More sensitive and compact sensor system is desired. The sensor system 

can be modified to be smaller and even portable which will be more convenient to use, or larger 

and with higher stability and sensitivity. More experimental materials can be applied to verify 

the system in other type of chemical or biological reactions. Simulation models can be expanded 

to investigate mechanisms for different types or chemical and biological reactions besides DNA 

hybridizations. More potential models need to be find out for different reaction types and 

environments. 
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